Suppr超能文献

基于静息态 EEG 的有效脑网络分析:海洛因成瘾者和非成瘾者的比较。

Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.

出版信息

J Neural Eng. 2017 Aug;14(4):046002. doi: 10.1088/1741-2552/aa6c6f.

Abstract

OBJECTIVE

Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools.

APPROACH

The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain.

MAIN RESULTS

This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways.

SIGNIFICANCE

These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

摘要

目的

神经电生理学工具已广泛应用于海洛因成瘾研究。先前的研究表明,慢性海洛因滥用会导致大脑功能组织异常,而很少有海洛因成瘾研究应用有效连通性工具来分析海洛因滥用引起的大脑功能系统(BFS)改变。本研究旨在使用源分解和有效连通性工具来识别静息状态下海洛因戒断 BFS 的异常。

方法

从 15 名男性海洛因戒断(HA)受试者和 14 名男性非成瘾(NA)对照中获取静息状态脑电图(EEG)信号。多变量自回归模型结合独立成分分析(MVARICA)用于盲源分解。广义部分定向相干性(GPDC)用于有效脑连接分析。构建了 HA 和 NA 组的有效大脑网络。通过自举方法比较两组有效皮质网络。在 1-45 Hz 频域估计分解源区之间的异常因果相互作用。

主要结果

本工作表明:(a)海洛因戒断组存在明显的有效网络改变;(b)顶叶区域是异常较弱因果途径的主导枢纽,左侧枕叶区域是异常较强因果途径的主导枢纽。

意义

这些发现提供了直接证据,表明慢性海洛因滥用会导致大脑功能异常。同时也暗示了结合有效连通性分析和脑源分解方法探索海洛因成瘾者大脑改变的潜在价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验