Suppr超能文献

线张力控制脂质双层中液相无序+液相有序域尺寸转变

Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers.

作者信息

Usery Rebecca D, Enoki Thais A, Wickramasinghe Sanjula P, Weiner Michael D, Tsai Wen-Chyan, Kim Mary B, Wang Shu, Torng Thomas L, Ackerman David G, Heberle Frederick A, Katsaras John, Feigenson Gerald W

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Biochemistry and Biophysics at the University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Biophys J. 2017 Apr 11;112(7):1431-1443. doi: 10.1016/j.bpj.2017.02.033.

Abstract

To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ∼0.3 pN. A computational model incorporating line tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. We find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.

摘要

为了更好地理解动物细胞质膜,我们研究了简化模型,即四组分脂质双层混合物。在此,我们描述了共存的液相无序(Ld)+液相有序(Lo)相区域中的畴尺寸转变。这种转变在成分空间中突然发生,畴尺寸增大两个数量级,从几十纳米增加到微米。我们测量了多种脂质混合物在接近畴尺寸转变时共存的Ld和Lo畴之间的线张力,发现在每种情况下,转变都发生在线张力约为0.3 pN时。一个包含线张力和偶极排斥的计算模型表明,即使线张力的微小变化也会导致畴尺寸增大几个数量级,这与实验观察结果一致。我们发现,共存的Ld和Lo相的其他性质在畴尺寸突然转变附近没有显著变化。

相似文献

1
Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers.
Biophys J. 2017 Apr 11;112(7):1431-1443. doi: 10.1016/j.bpj.2017.02.033.
2
On the small size of liquid-disordered + liquid-ordered nanodomains.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183685. doi: 10.1016/j.bbamem.2021.183685. Epub 2021 Jun 25.
3
Calculation of Liquid-Disordered/Liquid-Ordered Line Tension from Pairwise Lipid Interactions.
J Phys Chem B. 2020 Jun 18;124(24):4949-4959. doi: 10.1021/acs.jpcb.0c03329. Epub 2020 Jun 4.
4
Nanosecond lipid dynamics in membranes containing cholesterol.
Soft Matter. 2014 Apr 21;10(15):2600-11. doi: 10.1039/c3sm51757h.
5
Bilayer compositional asymmetry influences the nanoscopic to macroscopic phase domain size transition.
Chem Phys Lipids. 2020 Oct;232:104972. doi: 10.1016/j.chemphyslip.2020.104972. Epub 2020 Sep 15.
6
Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
Biophys J. 2010 Nov 17;99(10):3309-18. doi: 10.1016/j.bpj.2010.09.064.
7
Bilayer thickness mismatch controls domain size in model membranes.
J Am Chem Soc. 2013 May 8;135(18):6853-9. doi: 10.1021/ja3113615. Epub 2013 Feb 22.
9
Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
Eur Biophys J. 2003 Jul;32(4):381-91. doi: 10.1007/s00249-003-0281-3. Epub 2003 Mar 6.
10
Computer simulations of the phase separation in model membranes.
Faraday Discuss. 2013;161:63-75; discussion 113-50. doi: 10.1039/c2fd20117h.

引用本文的文献

1
Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation.
Sci Adv. 2025 Apr 25;11(17):eadu7190. doi: 10.1126/sciadv.adu7190. Epub 2025 Apr 23.
2
The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes.
Membranes (Basel). 2025 Mar 3;15(3):79. doi: 10.3390/membranes15030079.
3
Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach.
Biophys J. 2024 Sep 3;123(17):2877-2891. doi: 10.1016/j.bpj.2024.04.029. Epub 2024 Apr 30.
4
Lipid droplets as substrates for protein phase separation.
Biophys J. 2024 Jun 4;123(11):1494-1507. doi: 10.1016/j.bpj.2024.03.015. Epub 2024 Mar 11.
5
Synthesis, insertion, and characterization of SARS-CoV-2 membrane protein within lipid bilayers.
Sci Adv. 2024 Mar;10(9):eadm7030. doi: 10.1126/sciadv.adm7030. Epub 2024 Feb 28.
6
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease.
Annu Rev Biophys. 2024 Jul;53(1):455-486. doi: 10.1146/annurev-biophys-062823-023436. Epub 2024 Jun 28.
8
Natamycin interferes with ergosterol-dependent lipid phases in model membranes.
BBA Adv. 2023 Aug 25;4:100102. doi: 10.1016/j.bbadva.2023.100102. eCollection 2023.
9
Serinc5 Restricts HIV Membrane Fusion by Altering Lipid Order and Heterogeneity in the Viral Membrane.
ACS Infect Dis. 2023 Apr 14;9(4):773-784. doi: 10.1021/acsinfecdis.2c00478. Epub 2023 Mar 22.
10
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains.
Biophys J. 2023 Jun 6;122(11):2325-2341. doi: 10.1016/j.bpj.2023.02.029. Epub 2023 Mar 3.

本文引用的文献

1
2
Parameters for Martini sterols and hopanoids based on a virtual-site description.
J Chem Phys. 2015 Dec 28;143(24):243152. doi: 10.1063/1.4937783.
3
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
4
The MARTINI Coarse-Grained Force Field: Extension to Proteins.
J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
J Chem Theory Comput. 2015 Sep 8;11(9):4486-94. doi: 10.1021/acs.jctc.5b00513. Epub 2015 Aug 27.
7
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
8
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys J. 2015 Oct 20;109(8):1528-32. doi: 10.1016/j.bpj.2015.08.015.
9
Dynamic label-free imaging of lipid nanodomains.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12299-303. doi: 10.1073/pnas.1508483112. Epub 2015 Sep 23.
10
GUVs melt like LUVs: the large heat capacity of MLVs is not due to large size or small curvature.
Biophys J. 2015 Jun 2;108(11):2619-22. doi: 10.1016/j.bpj.2015.04.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验