Suppr超能文献

鞭毛摆动中的非线性振幅动力学。

Nonlinear amplitude dynamics in flagellar beating.

作者信息

Oriola David, Gadêlha Hermes, Casademunt Jaume

机构信息

Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Avinguda Diagonal 647, 08028 Barcelona, Spain.

Department of Mathematics, University of York, York YO10 5DD, UK; Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.

出版信息

R Soc Open Sci. 2017 Mar 8;4(3):160698. doi: 10.1098/rsos.160698. eCollection 2017 Mar.

Abstract

The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

摘要

鞭毛和纤毛摆动的物理基础是生物学中的一个主要问题,目前仍远未完全理解。纤毛和鞭毛的基本细胞骨架结构是轴丝,它是由被动交联剂和动力蛋白连接的微管双联体的圆柱形阵列。这些元件之间复杂的相互作用导致了自组织弯曲波的产生。尽管已经提出了许多数学模型来理解这一过程,但很少有人尝试评估动力蛋白在轴丝非线性特性中的作用。在这里,我们通过考虑轴丝滑动控制机制对动力蛋白活性的影响来研究鞭毛的非线性动力学。这种方法揭示了振荡幅度的非线性选择,而这在数学模型中通常要么被忽略要么是给定的。我们推导了明确的非线性方程组并进行了数值求解。我们的分析揭示了在不同的动力活性、介质粘度和鞭毛弹性条件下,动力蛋白群体的时空动力学和鞭毛形状。不稳定模式通过动力蛋白动力学和鞭毛形状的耦合而饱和,无需调用非线性轴丝响应。因此,我们的工作揭示了轴丝摆动中不稳定模式饱和的一种新机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e55/5383814/5a95cd994b25/rsos160698-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验