Suppr超能文献

使用人工神经网络的实时(基于视觉的)道路标志识别

Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network.

作者信息

Islam Kh Tohidul, Raj Ram Gopal

机构信息

Department of Artificial Intelligence, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Sensors (Basel). 2017 Apr 13;17(4):853. doi: 10.3390/s17040853.

Abstract

Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are 'traffic light ahead' or 'pedestrian crossing' indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications.

摘要

道路标志识别是一种驾驶员辅助功能,可通过显示当前路段可能生效的限制来通知和警告驾驶员。此类规定的示例包括“前方有交通信号灯”或“人行横道”指示。本研究旨在实时识别马来西亚的道路和交通标志。数字摄像机从行驶的车辆上拍摄实时视频,然后仅使用视觉信息提取现实世界中的道路标志。该系统基于两个阶段,一个阶段进行检测,另一个阶段进行识别。在第一阶段,开发并测试了一种混合颜色分割算法。在第二阶段,一种引入的鲁棒自定义特征提取方法首次在道路标志识别方法中使用。最后,创建了一个多层人工神经网络(ANN)来识别和解释各种道路标志。它很鲁棒,因为它已在标准和非标准道路标志上进行了测试,具有显著的识别准确率。该提议的系统在计算时间为0.3秒的情况下,平均准确率达到99.90%,灵敏度为99.90%,特异性为99.90%,F值为99.90%,误报率(FPR)为0.001。这种低FPR可以提高系统在实时应用中的稳定性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fe9/5424730/6c22098b9970/sensors-17-00853-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验