Glass Jacob L, Hassane Duane, Wouters Bas J, Kunimoto Hiroyoshi, Avellino Roberto, Garrett-Bakelman Francine E, Guryanova Olga A, Bowman Robert, Redlich Shira, Intlekofer Andrew M, Meydan Cem, Qin Tingting, Fall Mame, Alonso Alicia, Guzman Monica L, Valk Peter J M, Thompson Craig B, Levine Ross, Elemento Olivier, Delwel Ruud, Melnick Ari, Figueroa Maria E
Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
Department of Medicine, Hematology/Oncology Division, Weill Medical College of Cornell University, New York, New York.
Cancer Discov. 2017 Aug;7(8):868-883. doi: 10.1158/2159-8290.CD-16-1032. Epub 2017 Apr 13.
We performed cytosine methylation sequencing on genetically diverse patients with acute myeloid leukemia (AML) and found leukemic DNA methylation patterning is primarily driven by nonpromoter regulatory elements and CpG shores. Enhancers displayed stronger differential methylation than promoters, consisting predominantly of hypomethylation. AMLs with dominant hypermethylation featured greater epigenetic disruption of promoters, whereas those with dominant hypomethylation displayed greater disruption of distal and intronic regions. Mutations in and had opposing and mutually exclusive effects on the epigenome. Notably, co-occurrence of both mutations resulted in epigenetic antagonism, with most CpGs affected by either mutation alone no longer affected in double-mutant AMLs. Importantly, this epigenetic antagonism precedes malignant transformation and can be observed in preleukemic LSK cells from or single-mutant and / double-mutant mice. Notably, double-mutant AMLs manifested upregulation of a RAS signaling signature and displayed unique sensitivity to MEK inhibition as compared with AMLs with either single mutation. AML is biologically heterogeneous with subtypes characterized by specific genetic and epigenetic abnormalities. Comprehensive DNA methylation profiling revealed that differential methylation of nonpromoter regulatory elements is a driver of epigenetic identity, that gene mutations can be context-dependent, and that co-occurrence of mutations in epigenetic modifiers can result in epigenetic antagonism. .
我们对基因多样的急性髓系白血病(AML)患者进行了胞嘧啶甲基化测序,发现白血病DNA甲基化模式主要由非启动子调控元件和CpG岛岸驱动。增强子显示出比启动子更强的差异甲基化,主要由低甲基化组成。具有显性高甲基化的AML在启动子上表现出更大的表观遗传破坏,而具有显性低甲基化的AML在远端和内含子区域表现出更大的破坏。 和 中的突变对表观基因组有相反且相互排斥的影响。值得注意的是,两种突变同时出现会导致表观遗传拮抗作用,在双突变AML中,大多数仅受一种突变影响的CpG不再受影响。重要的是,这种表观遗传拮抗作用先于恶性转化,并且可以在来自 或 单突变和 / 双突变小鼠的白血病前期LSK细胞中观察到。值得注意的是,与单突变AML相比, 双突变AML表现出RAS信号特征的上调,并对MEK抑制表现出独特的敏感性。AML在生物学上是异质性的,其亚型具有特定的遗传和表观遗传异常特征。全面的DNA甲基化分析表明,非启动子调控元件的差异甲基化是表观遗传特征的驱动因素,基因突变可能依赖于背景,并且表观遗传修饰因子中的突变同时出现可导致表观遗传拮抗作用。