Hamon David, Rajendran Pradeep S, Chui Ray W, Ajijola Olujimi A, Irie Tadanobu, Talebi Ramin, Salavatian Siamak, Vaseghi Marmar, Bradfield Jason S, Armour J Andrew, Ardell Jeffrey L, Shivkumar Kalyanam
From the Cardiac Arrhythmia Center (D.H., P.S.R., R.W.C., O.A.A., T.I., R.T., S.S., M.V., J.S.B., J.A.A., J.L.A., K.S.), Neurocardiology Research Center of Excellence (D.H., P.S.R., R.W.C., O.A.A., T.I., R.T., S.S., M.V., J.A.A., J.L.A., K.S.), and Molecular, Cellular & Integrative Physiology Program (P.S.R., R.W.C., M.V., J.L.A., K.S.), David Geffen School of Medicine, University of California-Los Angeles.
Circ Arrhythm Electrophysiol. 2017 Apr;10(4). doi: 10.1161/CIRCEP.116.004937.
Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach.
In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (<0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (<0.05 versus short CI), particularly on convergent neurons (<0.05), as well as neurons receiving sympathetic (<0.05) and parasympathetic input (<0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs.
Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy.
室性早搏(PVC)联律间期(CI)的变异性会增加心肌病和猝死风险。自主神经系统调节心脏电和机械指标,其失调在心脏病发病机制中起重要作用。PVC对心脏固有神经系统(心脏上的神经网络)的影响尚不清楚。目的是使用一种新型心脏神经图谱方法,确定PVC和CI对心脏固有神经系统功能在产生心脏神经元和电不稳定方面的影响。
在猪模型(n = 8)中,使用微电极阵列记录心室神经节的神经元活动,并进行心脏电生理图谱分析。根据神经元对传入和传出心血管刺激的反应进行功能分类,对两种刺激均有反应的神经元定义为会聚性(局部反射处理)神经元。然后评估在固定短、固定长和可变CI的右心室流出道PVC刺激下神经元活动的动态变化。与所有其他刺激相比,PVC刺激引起的神经元反应更大(<0.001)。与固定短和长CI相比,可变CI的PVC对神经元反应的影响更大(与短CI相比,P < 0.05),特别是对会聚性神经元(P < 0.05),以及接受交感神经(P < 0.05)和副交感神经输入(P < 0.05)的神经元。在可变(短)CI的PVC刺激后也观察到最大的心脏电不稳定。
可变CI的PVC影响心脏固有神经系统神经元的关键群体,并改变心脏复极。这些变化可能对阵发性心律失常和重塑至关重要,从而导致心肌病。