Chang Kun-Che, Hertz Jonathan, Zhang Xiong, Jin Xiao-Lu, Shaw Peter, Derosa Brooke A, Li Janet Y, Venugopalan Praseeda, Valenzuela Daniel A, Patel Roshni D, Russano Kristina R, Alshamekh Shomoukh A, Sun Catalina, Tenerelli Kevin, Li Chenyi, Velmeshev Dmitri, Cheng Yuyan, Boyce Timothy M, Dreyfuss Alexandra, Uddin Mohammed S, Muller Kenneth J, Dykxhoorn Derek M, Goldberg Jeffrey L
Department of Ophthalmology, Stanford University, Palo Alto, California 94304,
Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute.
J Neurosci. 2017 May 10;37(19):4967-4981. doi: 10.1523/JNEUROSCI.3430-13.2017. Epub 2017 Apr 14.
What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies. Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.
在发育中的视网膜中,是什么信号通路决定了视网膜神经节细胞(RGC)的命运?在此,我们报告了一种分子信号通路的机制,该通路涉及Sox4/Sox11,是小鼠RGC分化和视神经形成所必需的,并且足以将人类诱导多能干细胞分化为具有电生理活性的RGC。这些数据表明,在调节RGC命运方面,Sox4位于RE1沉默转录因子的下游,并进一步描述了一个新发现的、由Sox4调节的位点,用于小泛素相关修饰物(SUMO化)对Sox11进行翻译后修饰,这抑制了Sox11的核定位及其促进RGC分化的能力,为在神经系统此处及其他地方观察到的SoxC家族补偿提供了一种机制。这些数据定义了这个SoxC分子网络的新型调控机制,并为青光眼和其他视神经病变基于细胞替代疗法的促RGC分子方法提供了思路。青光眼是全球失明的最常见原因,与其他视神经病变一样,其特征是视网膜神经节细胞(RGC)的丧失。不幸的是,视力和RGC丧失是不可逆的,在所有确诊患者中约14%会导致双侧失明。源自干细胞的分化并移植的RGC样细胞有可能替代已经丧失的神经元,从而恢复视觉功能。这些数据揭示了视网膜祖细胞(RPC)向RGC以及人类干细胞向RGC命运决定的新机制,并朝着理解神经元和视网膜发育以及最终的细胞移植治疗迈出了重要一步。