Friston Karl J, Rosch Richard, Parr Thomas, Price Cathy, Bowman Howard
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, UK.
Centre for Cognitive Neuroscience and Cognitive Systems and the School of Computing, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK; School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Neurosci Biobehav Rev. 2017 Jun;77:388-402. doi: 10.1016/j.neubiorev.2017.04.009. Epub 2017 Apr 14.
How do we navigate a deeply structured world? Why are you reading this sentence first - and did you actually look at the fifth word? This review offers some answers by appealing to active inference based on deep temporal models. It builds on previous formulations of active inference to simulate behavioural and electrophysiological responses under hierarchical generative models of state transitions. Inverting these models corresponds to sequential inference, such that the state at any hierarchical level entails a sequence of transitions in the level below. The deep temporal aspect of these models means that evidence is accumulated over nested time scales, enabling inferences about narratives (i.e., temporal scenes). We illustrate this behaviour with Bayesian belief updating - and neuronal process theories - to simulate the epistemic foraging seen in reading. These simulations reproduce perisaccadic delay period activity and local field potentials seen empirically. Finally, we exploit the deep structure of these models to simulate responses to local (e.g., font type) and global (e.g., semantic) violations; reproducing mismatch negativity and P300 responses respectively.
我们如何在一个结构深刻的世界中导航?你为什么先读这句话——你真的看了第五个单词吗?这篇综述通过诉诸基于深度时间模型的主动推理提供了一些答案。它建立在主动推理的先前公式之上,以模拟状态转换的分层生成模型下的行为和电生理反应。反转这些模型对应于顺序推理,使得任何层次级别的状态都需要下面级别的一系列转换。这些模型的深度时间方面意味着证据是在嵌套的时间尺度上积累的,从而能够对叙事(即时间场景)进行推理。我们用贝叶斯信念更新和神经元过程理论来说明这种行为,以模拟阅读中所见的认知觅食。这些模拟再现了经验上观察到的扫视间歇期活动和局部场电位。最后,我们利用这些模型的深度结构来模拟对局部(例如字体类型)和全局(例如语义)违反的反应;分别再现失配负波和P300反应。