Suppr超能文献

概率模型与生成神经网络:迈向一个用于对正常和受损神经认知功能进行建模的统一框架。

Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

作者信息

Testolin Alberto, Zorzi Marco

机构信息

Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padua, Italy.

Department of General Psychology and Center for Cognitive Neuroscience, University of PadovaPadua, Italy; IRCCS San Camillo Neurorehabilitation HospitalVenice-Lido, Italy.

出版信息

Front Comput Neurosci. 2016 Jul 13;10:73. doi: 10.3389/fncom.2016.00073. eCollection 2016.

Abstract

Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.

摘要

联结主义模型可以在概率图模型这个更通用的框架内进行描述,概率图模型能够有效地描述涉及大量相互作用变量的复杂统计分布。这种整合使得能够构建更现实的认知功能计算模型,这些模型能更忠实地反映潜在的神经机制,同时为基于贝叶斯计算的高级描述提供有用的桥梁。在此,我们讨论一类强大的图模型,这类模型可以实现为随机生成神经网络。这些模型克服了许多与经典联结主义模型相关的局限性,例如通过在分层架构(深度网络)中利用无监督学习,以及考虑由反馈回路支持的自上而下的预测处理。我们回顾了一些基于生成网络的近期认知模型,并指出了在这种方法中研究神经心理障碍的有前景的研究方向。尽管为了弥合结构化贝叶斯模型与更现实的神经元动力学生物物理模型之间的差距还需要进一步努力,但我们认为生成神经网络有潜力弥合这些分析层次,从而增进我们对认知的神经基础以及脑损伤所致病理的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5d/4943066/f82f16c10e8f/fncom-10-00073-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验