The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 3AR, UK.
Virtual Structures Research, Inc., 12204 Saint James Rd, Potomac, MD 20854, USA.
Neurosci Biobehav Rev. 2020 Nov;118:42-64. doi: 10.1016/j.neubiorev.2020.07.005. Epub 2020 Jul 17.
This paper presents a biologically plausible generative model and inference scheme that is capable of simulating communication between synthetic subjects who talk to each other. Building on active inference formulations of dyadic interactions, we simulate linguistic exchange to explore generative models that support dialogues. These models employ high-order interactions among abstract (discrete) states in deep (hierarchical) models. The sequential nature of language processing mandates generative models with a particular factorial structure-necessary to accommodate the rich combinatorics of language. We illustrate linguistic communication by simulating a synthetic subject who can play the 'Twenty Questions' game. In this game, synthetic subjects take the role of the questioner or answerer, using the same generative model. This simulation setup is used to illustrate some key architectural points and demonstrate that many behavioural and neurophysiological correlates of linguistic communication emerge under variational (marginal) message passing, given the right kind of generative model. For example, we show that theta-gamma coupling is an emergent property of belief updating, when listening to another.
本文提出了一种具有生物学合理性的生成模型和推理方案,能够模拟具有对话能力的合成主体之间的交流。该模型基于二元交互的主动推理公式,通过模拟语言交流来探索支持对话的生成模型。这些模型在深度(分层)模型中使用抽象(离散)状态之间的高阶交互。语言处理的顺序性质要求生成模型具有特定的因子结构,这对于适应语言的丰富组合是必要的。我们通过模拟一个可以玩“二十个问题”游戏的合成主体来展示语言交流。在这个游戏中,合成主体可以扮演提问者或回答者,使用相同的生成模型。这种模拟设置用于说明一些关键的体系结构要点,并证明在给定正确生成模型的情况下,许多语言交流的行为和神经生理学相关性可以通过变分(边际)消息传递来实现。例如,我们表明,当倾听另一个人的声音时,θ-γ耦合是信念更新的一个涌现属性。