Lan X, Basu S, Schwietzke S, Bruhwiler L M P, Dlugokencky E J, Michel S E, Sherwood O A, Tans P P, Thoning K, Etiope G, Zhuang Q, Liu L, Oh Y, Miller J B, Pétron G, Vaughn B H, Crippa M
Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Boulder CO USA.
Global Monitoring Laboratory National Oceanic and Atmospheric Administration Boulder CO USA.
Global Biogeochem Cycles. 2021 Jun;35(6):e2021GB007000. doi: 10.1029/2021GB007000. Epub 2021 Jun 17.
We study the drivers behind the global atmospheric methane (CH) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984-2016 to produce three-dimensional fields of CH and C-CH, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed C-CH. Increased FF CH emissions are unlikely to be the dominant driver for the post-2006 global CH increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH increase since it does not track the observed decrease in global mean C-CH. Different CH sinks have different fractionation factors for C-CH, thus we can investigate the uncertainty introduced by the reaction of CH with tropospheric chlorine (Cl), a CH sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.
我们研究了2006年后观测到的全球大气甲烷(CH₄)增加背后的驱动因素。基于文献中提出的假设构建了候选排放和汇情景。这些情景在TM5示踪剂传输模型中针对1984 - 2016年进行模拟,以生成CH₄和¹³C-CH₄的三维场,并与观测结果进行比较,以便在一个通用模型框架中检验文献中的相互竞争假设。我们发现,全球大气研究排放数据库4.3.2清单中的化石燃料(FF)CH₄排放趋势与观测到的¹³C-CH₄不一致。尽管FF排放可能有小幅增加,但增加的FF CH₄排放不太可能是2006年后全球CH₄增加的主要驱动因素。我们还发现,羟基自由基(OH)丰度的显著下降无法解释2006年后全球CH₄的增加,因为它并未追踪到观测到的全球平均¹³C-CH₄的下降。不同的CH₄汇对¹³C-CH₄具有不同的分馏因子, 因此我们可以研究CH₄与对流层氯(Cl)反应所引入的不确定性,对流层氯是一种CH₄汇,其丰度、空间分布和时间变化仍不确定。我们的结果表明,在我们的模型中纳入或排除对流层Cl作为每年13 Tg的CH₄汇,会使估计的化石排放量的幅度变化约20%。我们还发现,根据静态与动态湿地面积图使用不同的湿地排放,FF与微生物源之间的分配差异为每年20 Tg,约占估计化石排放量的12%。