Suppr超能文献

通过组蛋白尾巴和连接DNA的核小体-核小体相互作用调节核刚性。

Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity.

作者信息

Shimamoto Yuta, Tamura Sachiko, Masumoto Hiroshi, Maeshima Kazuhiro

机构信息

Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan

Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima 411-8540, Japan.

出版信息

Mol Biol Cell. 2017 Jun 1;28(11):1580-1589. doi: 10.1091/mbc.E16-11-0783. Epub 2017 Apr 20.

Abstract

Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers.

摘要

细胞以及其中的细胞核在包括收缩、迁移和黏附等多种生物过程中会经历显著的机械应力。因此,必须维持细胞核的结构稳定性以保护基因组完整性。然而,尽管对核结构和组成成分已有广泛了解,但其潜在的物理和分子机制仍 largely 未知。我们通过对分离的人类细胞核进行基于微针的定量微操作,并对染色质进行一系列生化扰动来解决这个问题。我们发现细胞核的机械刚性取决于核小体纤维的连续性以及核小体之间的相互作用。通过改变阳离子浓度、乙酰化组蛋白尾巴或消化连接 DNA 来破坏这些染色质特征会导致核刚性丧失。相比之下,关键染色质组装因子的水平,包括黏连蛋白、凝聚素 II 和 CTCF,以及一种主要的核膜蛋白核纤层蛋白不受影响。结合使用活细胞的原位证据和一个简单的力学模型,我们的发现揭示了基于染色质的核机械反应调节,并深入了解了局部和全局染色质结构的重要性,例如那些与交错或熔化的核小体纤维相关的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dcd/5449155/77293ff1069c/1580fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验