Suppr超能文献

通过有限元分析评估内侧副韧带在维持膝关节稳定性中的作用

The evaluation of the role of medial collateral ligament maintaining knee stability by a finite element analysis.

作者信息

Ren Dong, Liu Yueju, Zhang Xianchao, Song Zhaohui, Lu Jian, Wang Pengcheng

机构信息

Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.

Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Shijiazhuang, 050051, Hebei, China.

出版信息

J Orthop Surg Res. 2017 Apr 21;12(1):64. doi: 10.1186/s13018-017-0566-3.

Abstract

BACKGROUND

A three-dimensional finite element model (FEM) of the knee joint was established to analyze the biomechanical functions of the superficial and deep medial collateral ligaments (MCLs) of knee joints and to investigate the treatment of the knee medial collateral ligament injury.

METHODS

The right knee joint of a healthy male volunteer was subjected to CT and MRI scans in the extended position. The scanned data were imported into MIMICS, Geomagic, and ANSYS software to establish a three-dimensional FEM of the human knee joint. The anterior-posterior translation, valgus-varus rotation, and internal-external rotation of knee joints were simulated to observe tibial displacement or valgus angle. In addition, the magnitude and distribution of valgus stress in the superficial and deep layers of the intact MCL as well as the superficial, deep, and overall deficiencies of the MCL were investigated.

RESULTS

In the extended position, the superficial medial collateral ligament (SMCL) would withstand maximum stresses of 48.63, 16.08, 17.23, and 16.08 MPa in resisting the valgus of knee joints, tibial forward displacement, internal rotation, and external rotation, respectively. Meanwhile, the maximum stress tolerated by the SMCL in various ranges of motion mainly focused on the femoral end point, which was located at the anterior and posterior parts of the femur in resisting valgus motion and external rotation, respectively. However, the deep medial collateral ligament could tolerate only minimum stress, which was mainly focused at the femoral start and end points.

CONCLUSIONS

This model can effectively analyze the biomechanical functions of the superficial and deep layers of the MCLs of knee joints. The results show that the knee MCL II° injury is the indication of surgical repair.

摘要

背景

建立膝关节三维有限元模型(FEM),以分析膝关节浅层和深层内侧副韧带(MCL)的生物力学功能,并探讨膝关节内侧副韧带损伤的治疗方法。

方法

对一名健康男性志愿者的右膝关节在伸直位进行CT和MRI扫描。将扫描数据导入MIMICS、Geomagic和ANSYS软件,建立人体膝关节的三维有限元模型。模拟膝关节的前后平移、内外翻旋转和内外旋转,观察胫骨位移或外翻角度。此外,研究了完整MCL浅层和深层的外翻应力大小和分布,以及MCL浅层、深层和整体缺损情况。

结果

在伸直位,浅层内侧副韧带(SMCL)在抵抗膝关节外翻、胫骨向前位移、内旋和外旋时,分别承受48.63、16.08、17.23和16.08MPa的最大应力。同时,SMCL在各个运动范围内耐受的最大应力主要集中在股骨端点,在抵抗外翻运动和外旋时分别位于股骨的前部和后部。然而,深层内侧副韧带仅能耐受最小应力,主要集中在股骨起始点和终点。

结论

该模型可有效分析膝关节MCL浅层和深层的生物力学功能。结果表明,膝关节MCLⅡ度损伤是手术修复的指征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9313/5399804/d1f7b86bcb40/13018_2017_566_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验