Suppr超能文献

ELNet:使用卷积神经网络对食管病变进行自动分类和分割。

ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network.

机构信息

School of Cyberspace Security, Southeast University, Nanjing, Jiangsu, China.

School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China.

出版信息

Med Image Anal. 2021 Jan;67:101838. doi: 10.1016/j.media.2020.101838. Epub 2020 Oct 7.

Abstract

Automatic and accurate esophageal lesion classification and segmentation is of great significance to clinically estimate the lesion statuses of the esophageal diseases and make suitable diagnostic schemes. Due to individual variations and visual similarities of lesions in shapes, colors, and textures, current clinical methods remain subject to potential high-risk and time-consumption issues. In this paper, we propose an Esophageal Lesion Network (ELNet) for automatic esophageal lesion classification and segmentation using deep convolutional neural networks (DCNNs). The underlying method automatically integrates dual-view contextual lesion information to extract global features and local features for esophageal lesion classification and lesion-specific segmentation network is proposed for automatic esophageal lesion annotation at pixel level. For the established clinical large-scale database of 1051 white-light endoscopic images, ten-fold cross-validation is used in method validation. Experiment results show that the proposed framework achieves classification with sensitivity of 0.9034, specificity of 0.9718, and accuracy of 0.9628, and the segmentation with sensitivity of 0.8018, specificity of 0.9655, and accuracy of 0.9462. All of these indicate that our method enables an efficient, accurate, and reliable esophageal lesion diagnosis in clinics.

摘要

自动且准确的食管病变分类和分割对临床上评估食管疾病的病变状况并制定合适的诊断方案具有重要意义。由于病变在形状、颜色和纹理上存在个体差异和视觉相似性,当前的临床方法仍然存在潜在的高风险和耗时问题。在本文中,我们提出了一种基于深度卷积神经网络(DCNN)的食管病变网络(ELNet),用于自动进行食管病变分类和分割。该方法自动集成双视图上下文病变信息,以提取全局特征和局部特征,用于食管病变分类,同时提出了病变特定的分割网络,用于自动进行像素级别的食管病变标注。对于建立的 1051 张白光内窥镜图像的临床大型数据库,我们采用十折交叉验证进行方法验证。实验结果表明,所提出的框架在分类方面的灵敏度为 0.9034,特异性为 0.9718,准确性为 0.9628,在分割方面的灵敏度为 0.8018,特异性为 0.9655,准确性为 0.9462。所有这些都表明,我们的方法能够在临床上实现高效、准确和可靠的食管病变诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验