Pennycook Stephen J
Department of Materials Science and Engineering, National University of Singapore, Singapore.
Ultramicroscopy. 2017 Sep;180:22-33. doi: 10.1016/j.ultramic.2017.03.020. Epub 2017 Mar 18.
Over the last three decades the scanning transmission electron microscope (STEM) has gone from a specialized instrument for nanoscale analysis to the microscope of choice for atomic resolution imaging of materials, allowing incoherent high-angle annular dark field (Z-contrast) imaging, coherent phase contrast modes (conventional and annular bright field), electron energy loss and energy dispersive X-ray spectroscopy. All signals are achieving atomic resolution and several are available simultaneously. This would not have been possible without the development of an aberration corrector for the STEM, spearheaded by Ondrej Krivanek in the late 1990s, which finally allowed the benefits of the STEM to translate from "in-principle" to actual daily practice. Here I will recall my own experiences with the aberration-corrected STEM in partnership with Ondrej, a truly exciting and rewarding journey.
在过去三十年里,扫描透射电子显微镜(STEM)已从一种用于纳米级分析的专业仪器发展成为材料原子分辨率成像的首选显微镜,能够进行非相干高角度环形暗场(Z 衬度)成像、相干相衬模式(传统和环形亮场)、电子能量损失谱和能量色散 X 射线光谱分析。所有这些信号都能达到原子分辨率,并且有几种信号可以同时获取。如果没有由翁德雷·克里瓦内克在 20 世纪 90 年代末率先开发的 STEM 像差校正器,这一切都是不可能实现的,该像差校正器最终使 STEM 的优势从“理论上”转化为实际的日常应用。在此,我将回顾我自己与翁德雷合作使用像差校正 STEM 的经历,这是一段真正令人兴奋且收获颇丰的历程。