School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2017 May 24;9(20):17042-17050. doi: 10.1021/acsami.7b02035. Epub 2017 May 9.
The potential of using an amine-functionalized metal organic framework (MOF), mmen-M(dobpdc) (M = Mg and Mn), supported on a structured monolith contactor for CO capture from simulated flue gas is explored. The stability of the unsupported MOF powders under humid conditions is explored using nitrogen physisorption and X-ray diffraction analysis before and after exposure to humidity. Based on its superior stability to humidity, mmen-Mg(dobpdc) is selected for further growth on a honeycomb cordierite monolith that is wash-coated with α-alumina. A simple approach for the synthesis of an Mg(dobpdc) MOF film using MgO nanoparticles as the metal precursor is used. Rapid drying of MgO on the monolith surface followed by a hydrothermal treatment is demonstrated to allow for the synthesis of a MOF film with good crystallite density and favorable orientation of the MOF crystals. The CO adsorption behavior of the monolith-supported mmen-Mg(dobpdc) material is assessed using 10% CO in helium and 100% CO, demonstrating a CO uptake of 2.37 and 2.88 mmol/g, respectively. Excellent cyclic adsorption/desorption performance over multiple cycles is also observed. This is one of the first examples of the deployment of an advanced MOF adsorbent in a scalable, low-pressure drop gas-solid contactor. Such demonstrations are critical to the practical application of MOF materials in adsorptive gas separations, as structured contactors have many practical advantages over packed or fluidized beds.
探索了在结构化整体式接触器上负载胺功能化金属有机骨架(MOF)mmen-M(dobpdc)(M = Mg 和 Mn),以用于从模拟烟道气中捕获 CO。在暴露于湿度之前和之后,使用氮气物理吸附和 X 射线衍射分析来探索无载体 MOF 粉末在潮湿条件下的稳定性。基于其对湿度的优异稳定性,选择 mmen-Mg(dobpdc)进一步在蜂窝堇青石整体式上生长,堇青石整体式用α-氧化铝进行了涂覆。使用 MgO 纳米颗粒作为金属前体制备了 Mg(dobpdc)MOF 膜的简单方法。在整体式表面上快速干燥 MgO,然后进行水热处理,证明可以合成具有良好结晶密度和 MOF 晶体有利取向的 MOF 膜。使用氦气中的 10%CO 和 100%CO 评估了负载在整体式上的 mmen-Mg(dobpdc)材料的 CO 吸附行为,分别证明了 2.37 和 2.88 mmol/g 的 CO 吸收量。还观察到多次循环的出色循环吸附/解吸性能。这是将先进的 MOF 吸附剂应用于可扩展、低压降气固接触器的首批实例之一。这种演示对于 MOF 材料在吸附性气体分离中的实际应用至关重要,因为结构化接触器相对于填充床或流化床具有许多实际优势。