Suppr超能文献

利用噬菌体蛋白抑制CRISPR-Cas9

Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.

作者信息

Rauch Benjamin J, Silvis Melanie R, Hultquist Judd F, Waters Christopher S, McGregor Michael J, Krogan Nevan J, Bondy-Denomy Joseph

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009. Epub 2016 Dec 29.

Abstract

Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.

摘要

细菌的CRISPR-Cas系统利用序列特异性RNA引导的核酸酶来抵御噬菌体感染。作为一种应对措施,已知许多噬菌体产生蛋白质来阻断1类CRISPR-Cas系统的功能。然而,目前尚不知道有任何蛋白质能抑制广泛使用的2类CRISPR-Cas9系统。为了找到这些抑制剂,我们在含有cas9的细菌基因组中搜索CRISPR间隔序列及其靶标的共存情况,这是CRISPR抑制的一个潜在指标。该分析导致发现了由单核细胞增生李斯特菌原噬菌体编码的四种独特的II-A型CRISPR-Cas9抑制蛋白。超过一半含有cas9的单核细胞增生李斯特菌菌株至少含有一种原噬菌体编码的抑制剂,这表明CRISPR-Cas9广泛失活。当在大肠杆菌和人类细胞中进行检测时,其中两种抑制剂也能阻断广泛使用的化脓性链球菌Cas9。这些天然的Cas9特异性“抗CRISPR”提供了可用于调控CRISPR-Cas9基因组工程活性的工具。

相似文献

1
Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.利用噬菌体蛋白抑制CRISPR-Cas9
Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009. Epub 2016 Dec 29.
4
Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.关键抗 CRISPR 基因座由双功能 Cas9 抑制剂抑制。
Cell Host Microbe. 2020 Jul 8;28(1):23-30.e5. doi: 10.1016/j.chom.2020.04.002. Epub 2020 Apr 22.
5
Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes.李斯特菌噬菌体诱导 Cas9 降解以保护溶原基因组。
Cell Host Microbe. 2020 Jul 8;28(1):31-40.e9. doi: 10.1016/j.chom.2020.04.001. Epub 2020 Apr 22.
6
8
A Broad-Spectrum Inhibitor of CRISPR-Cas9.一种CRISPR-Cas9的广谱抑制剂。
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.
9
The Anti-CRISPR Story: A Battle for Survival.《抗 CRISPR 故事:一场生存之战》。
Mol Cell. 2017 Oct 5;68(1):8-14. doi: 10.1016/j.molcel.2017.09.002.

引用本文的文献

3
Mechanism of Cas9 inhibition by AcrIIA11.AcrIIA11对Cas9的抑制机制。
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf318.

本文引用的文献

3
Applications of CRISPR technologies in research and beyond.CRISPR技术在研究及其他领域的应用。
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
5
Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3.Cas3 抑制因子 AcrF3 的结构基础
Nat Struct Mol Biol. 2016 Sep;23(9):868-70. doi: 10.1038/nsmb.3269. Epub 2016 Jul 25.
9
CRISPR-Cas immunity in prokaryotes.原核生物中的 CRISPR-Cas 免疫。
Nature. 2015 Oct 1;526(7571):55-61. doi: 10.1038/nature15386.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验