Suppr超能文献

聚多巴胺包覆的具有超高弛豫率的氧化锰纳米颗粒作为用于磁共振成像引导的协同化学/光热疗法的纳米诊疗剂。

Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy.

作者信息

Ding Xing, Liu Jianhua, Li Junqi, Wang Fan, Wang Yinghui, Song Shuyan, Zhang Hongjie

机构信息

State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China . Email:

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China.

出版信息

Chem Sci. 2016 Nov 1;7(11):6695-6700. doi: 10.1039/c6sc01320a. Epub 2016 Jul 6.

Abstract

Mn-based nanoparticles have been regarded as a new class of probes for magnetic resonance imaging (MRI), but their low relaxivity is the major obstacle for applications . Herein, we designed and constructed a multifunctional nanotheranostic (FA-MnO@PDA@PEG) for MRI guided combinatorial chemo-/photothermal therapy (PTT) for cancer. The ultrahigh relaxivity of 14.47 mM s makes the nanotheranostic an excellent contrast agent for MRI and , and provides comprehensive information for tumor diagnosis. When irradiated with an 808 nm NIR laser, FA-MnO@PDA@PEG exhibits a remarkably improved and synergistic therapeutic effect compared to PTT or chemotherapy alone, providing high therapeutic efficiency and low side effects of drugs. These findings are of great interest and will inspire us to develop highly effective MRI guided synergetic chemo-/photothermal therapy for cancer treatment.

摘要

锰基纳米颗粒被视为一类新型的磁共振成像(MRI)探针,但其低弛豫率是应用的主要障碍。在此,我们设计并构建了一种用于MRI引导的癌症联合化学/光热疗法(PTT)的多功能纳米诊疗剂(FA-MnO@PDA@PEG)。14.47 mM s的超高弛豫率使该纳米诊疗剂成为MRI的优良造影剂,并为肿瘤诊断提供全面信息。当用808 nm近红外激光照射时,与单独的PTT或化疗相比,FA-MnO@PDA@PEG表现出显著改善的协同治疗效果,提供了高治疗效率和低药物副作用。这些发现极具意义,并将激励我们开发用于癌症治疗的高效MRI引导协同化学/光热疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad98/5355856/2531ed55a081/c6sc01320a-f1.jpg

相似文献

3
Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19296-19306. doi: 10.1021/acsami.7b03087. Epub 2017 May 23.
5
MRI-guided dual-responsive anti-tumor nanostructures for synergistic chemo-photothermal therapy and chemodynamic therapy.
Acta Biomater. 2023 Mar 1;158:571-582. doi: 10.1016/j.actbio.2022.12.053. Epub 2022 Dec 28.
6
Dual-Stimuli-Responsive Multifunctional GdHfO Nanoparticles for MRI-Guided Combined Chemo-/Photothermal-/Radiotherapy of Resistant Tumors.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35928-35939. doi: 10.1021/acsami.0c09422. Epub 2020 Jul 30.
9
Folic acid-modified Prussian blue/polydopamine nanoparticles as an MRI agent for use in targeted chemo/photothermal therapy.
Biomater Sci. 2019 Jul 1;7(7):2996-3006. doi: 10.1039/c9bm00276f. Epub 2019 May 21.
10
Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor.
Acta Biomater. 2017 Jan 1;47:124-134. doi: 10.1016/j.actbio.2016.10.010. Epub 2016 Oct 6.

引用本文的文献

1
Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics.
Molecules. 2024 Nov 26;29(23):5591. doi: 10.3390/molecules29235591.
2
Utilization of nanomaterials in MRI contrast agents and their role in therapy guided by imaging.
Front Bioeng Biotechnol. 2024 Nov 19;12:1484577. doi: 10.3389/fbioe.2024.1484577. eCollection 2024.
4
Polydopamine Modified Ceria Nanorods Alleviate Inflammation in Colitis by Scavenging ROS and Regulating Macrophage M2 Polarization.
Int J Nanomedicine. 2023 Aug 14;18:4601-4616. doi: 10.2147/IJN.S416049. eCollection 2023.
6
Recent Advances in Functionalized Nanoparticles in Cancer Theranostics.
Nanomaterials (Basel). 2022 Aug 17;12(16):2826. doi: 10.3390/nano12162826.
8
Biomimetic ZIF8 Nanosystem With Tumor Hypoxia Relief Ability to Enhance Chemo-Photothermal Synergistic Therapy.
Front Pharmacol. 2022 Mar 24;13:850534. doi: 10.3389/fphar.2022.850534. eCollection 2022.
9
Dual-targeted photothermal agents for enhanced cancer therapy.
Chem Sci. 2020 Jul 17;11(31):8055-8072. doi: 10.1039/d0sc03173a.
10
Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine.
Chem Soc Rev. 2021 Apr 7;50(7):4432-4483. doi: 10.1039/d0cs00908c. Epub 2021 Feb 17.

本文引用的文献

2
Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents.
Chem Sci. 2016 Jul 1;7(7):4230-4236. doi: 10.1039/c6sc00342g. Epub 2016 Mar 22.
3
A sweet polydopamine nanoplatform for synergistic combination of targeted chemo-photothermal therapy.
Macromol Rapid Commun. 2015 May;36(10):916-22. doi: 10.1002/marc.201500090. Epub 2015 Apr 1.
5
Tumor-targeted responsive nanoparticle-based systems for magnetic resonance imaging and therapy.
Pharm Res. 2014 Dec;31(12):3487-502. doi: 10.1007/s11095-014-1436-x. Epub 2014 Jun 13.
7
Aptamer-conjugated Mn3O4@SiO2 core-shell nanoprobes for targeted magnetic resonance imaging.
Nanoscale. 2013 Nov 7;5(21):10447-54. doi: 10.1039/c3nr03490a. Epub 2013 Sep 13.
8
Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3316-20. doi: 10.1073/pnas.1216916110. Epub 2013 Feb 11.
10
Tunable carbon nanotube/protein core-shell nanoparticles with NIR- and enzymatic-responsive cytotoxicity.
Adv Mater. 2013 Feb 20;25(7):1010-5. doi: 10.1002/adma.201203382. Epub 2012 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验