Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark.
ACS Nano. 2017 May 23;11(5):4553-4563. doi: 10.1021/acsnano.6b08563. Epub 2017 Apr 28.
The ability to handle single, free molecules in lab-on-a-chip systems is key to the development of advanced biotechnologies. Entropic confinement offers passive control of polymers in nanofluidic systems by locally asserting a molecule's number of available conformation states through structured landscapes. Separately, a range of plasmonic configurations have demonstrated active manipulation of nano-objects by harnessing concentrated electric fields. The integration of these two independent techniques promises a range of sophisticated and complementary functions to handle, for example, DNA, but numerous difficulties, in particular, conflicting requirements of channel size, have prevented progress. Here, we show that metallic V-groove waveguides, embedded in fluidic nanoslits, form entropic potentials that trap and guide DNA molecules over well-defined routes while simultaneously promoting photothermal transport of DNA through the losses of plasmonic modes. The propulsive forces, assisted by in-coupling to propagating channel plasmon polaritons, extend along the V-grooves with a directed motion up to ≈0.5 μm·mW away from the input beam and λ-DNA velocities reaching ≈0.2 μm·s·mW. The entropic trapping enables the V-grooves to be flexibly loaded and unloaded with DNA by variation of transverse fluid flow, a process that is selective to biopolymers versus fixed-shape objects and also allows the technique to address the challenges of nanoscale interaction volumes. Our self-aligning, light-driven actuator provides a convenient platform to filter, route, and manipulate individual molecules and may be realized wholly by wafer-scale fabrication suitable for parallelized investigation.
在微流控芯片系统中处理单个游离分子的能力是开发先进生物技术的关键。熵约束通过在结构化的景观中局部断言分子的可用构象状态的数量,为纳米流体系统中的聚合物提供了被动控制。另外,各种等离子体配置已通过利用集中的电场展示了对纳米物体的主动操纵。这两种独立技术的集成有望实现一系列复杂而互补的功能,例如处理 DNA,但存在许多困难,特别是通道尺寸的要求相互冲突,这阻碍了进展。在这里,我们表明嵌入在流体纳米狭缝中的金属 V 形槽波导形成了熵势,可捕获和引导 DNA 分子沿着明确定义的路线行进,同时通过等离子体模式的损耗促进 DNA 的光热传输。在传播通道等离子体极化激元的耦合辅助下,推进力沿 V 形槽延伸,从输入光束的方向上的定向运动达到约 0.5μm·mW,并且 λ-DNA 速度达到约 0.2μm·s·mW。通过横向流体流动的变化,熵捕获使 V 形槽能够灵活地加载和卸载 DNA,这一过程对生物聚合物与固定形状的物体具有选择性,并且还允许该技术解决纳米级相互作用体积的挑战。我们的自对准、光驱动执行器提供了一个方便的平台来过滤、路由和操纵单个分子,并且可以通过适合并行化研究的晶圆级制造完全实现。