Suppr超能文献

贝叶斯统计方法在评估认知模型中的应用。

Bayesian statistical approaches to evaluating cognitive models.

机构信息

Department of Psychology, Vanderbilt University, Nashville, TN, USA.

出版信息

Wiley Interdiscip Rev Cogn Sci. 2018 Mar;9(2). doi: 10.1002/wcs.1458. Epub 2017 Nov 28.

Abstract

Cognitive models aim to explain complex human behavior in terms of hypothesized mechanisms of the mind. These mechanisms can be formalized in terms of mathematical structures containing parameters that are theoretically meaningful. For example, in the case of perceptual decision making, model parameters might correspond to theoretical constructs like response bias, evidence quality, response caution, and the like. Formal cognitive models go beyond verbal models in that cognitive mechanisms are instantiated in terms of mathematics and they go beyond statistical models in that cognitive model parameters are psychologically interpretable. We explore three key elements used to formally evaluate cognitive models: parameter estimation, model prediction, and model selection. We compare and contrast traditional approaches with Bayesian statistical approaches to performing each of these three elements. Traditional approaches rely on an array of seemingly ad hoc techniques, whereas Bayesian statistical approaches rely on a single, principled, internally consistent system. We illustrate the Bayesian statistical approach to evaluating cognitive models using a running example of the Linear Ballistic Accumulator model of decision making (Brown SD, Heathcote A. The simplest complete model of choice response time: linear ballistic accumulation. Cogn Psychol 2008, 57:153-178). WIREs Cogn Sci 2018, 9:e1458. doi: 10.1002/wcs.1458 This article is categorized under: Neuroscience > Computation Psychology > Reasoning and Decision Making Psychology > Theory and Methods.

摘要

认知模型旨在根据心智的假设机制来解释复杂的人类行为。这些机制可以用包含具有理论意义的参数的数学结构形式化。例如,在感知决策的情况下,模型参数可能对应于理论结构,如响应偏差、证据质量、响应谨慎等。形式认知模型超越了口头模型,因为认知机制是用数学来体现的,它们也超越了统计模型,因为认知模型参数具有心理可解释性。我们探讨了用于形式评估认知模型的三个关键元素:参数估计、模型预测和模型选择。我们比较和对比了传统方法和贝叶斯统计方法在执行这三个元素中的每一个的方法。传统方法依赖于一系列看似特别的技术,而贝叶斯统计方法则依赖于单一、有原则、内部一致的系统。我们使用决策的线性弹道积累模型(Brown SD,Heathcote A. 最简单的完整选择反应时模型:线性弹道积累。认知心理学 2008, 57:153-178)的示例来说明评估认知模型的贝叶斯统计方法。WIREs Cogn Sci 2018, 9:e1458. doi: 10.1002/wcs.1458 本文属于以下类别:神经科学 > 计算心理学 > 推理和决策心理学 > 理论与方法。

相似文献

1
Bayesian statistical approaches to evaluating cognitive models.
Wiley Interdiscip Rev Cogn Sci. 2018 Mar;9(2). doi: 10.1002/wcs.1458. Epub 2017 Nov 28.
2
Bayesian inference with Stan: A tutorial on adding custom distributions.
Behav Res Methods. 2017 Jun;49(3):863-886. doi: 10.3758/s13428-016-0746-9.
3
Bayes factors for the linear ballistic accumulator model of decision-making.
Behav Res Methods. 2018 Apr;50(2):589-603. doi: 10.3758/s13428-017-0887-5.
4
5
Dynamic models of choice.
Behav Res Methods. 2019 Apr;51(2):961-985. doi: 10.3758/s13428-018-1067-y.
6
Bayesian modeling of the mind: From norms to neurons.
Wiley Interdiscip Rev Cogn Sci. 2021 Jan;12(1):e1540. doi: 10.1002/wcs.1540. Epub 2020 Aug 15.
7
Three case studies in the Bayesian analysis of cognitive models.
Psychon Bull Rev. 2008 Feb;15(1):1-15. doi: 10.3758/pbr.15.1.1.
8
A cognitive model-based approach to testing mechanistic explanations for neuropsychological decrements during tobacco abstinence.
Psychopharmacology (Berl). 2018 Nov;235(11):3115-3124. doi: 10.1007/s00213-018-5008-3. Epub 2018 Sep 4.
10
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Br J Math Stat Psychol. 2017 May;70(2):280-296. doi: 10.1111/bmsp.12100.

引用本文的文献

2
Listening efficiency in adult cochlear-implant users compared with normally-hearing controls at ecologically relevant signal-to-noise ratios.
Front Hum Neurosci. 2023 Jul 14;17:1214485. doi: 10.3389/fnhum.2023.1214485. eCollection 2023.
3
Troubleshooting Bayesian cognitive models.
Psychol Methods. 2025 Feb;30(1):128-154. doi: 10.1037/met0000554. Epub 2023 Mar 27.
4
On Testing and Developing Cognitive Models.
Comput Brain Behav. 2019;2(3-4):193-196. doi: 10.1007/s42113-019-00041-2. Epub 2019 Jul 26.
5
The Bayesian causal inference model benefits from an informed prior to predict proprioceptive drift in the rubber foot illusion.
Cogn Process. 2019 Nov;20(4):447-457. doi: 10.1007/s10339-019-00928-9. Epub 2019 Aug 21.
6
Thermodynamic Integration and Steppingstone Sampling Methods for Estimating Bayes Factors: A Tutorial.
J Math Psychol. 2019 Apr;89:67-86. doi: 10.1016/j.jmp.2019.01.005. Epub 2019 Feb 13.
7
Modeling memory dynamics in visual expertise.
J Exp Psychol Learn Mem Cogn. 2019 Sep;45(9):1599-1618. doi: 10.1037/xlm0000664. Epub 2018 Oct 22.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Approaches to Analysis in Model-based Cognitive Neuroscience.
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
3
Thermodynamic Integration and Steppingstone Sampling Methods for Estimating Bayes Factors: A Tutorial.
J Math Psychol. 2019 Apr;89:67-86. doi: 10.1016/j.jmp.2019.01.005. Epub 2019 Feb 13.
4
Model-based cognitive neuroscience.
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.
5
Bayes factors for the linear ballistic accumulator model of decision-making.
Behav Res Methods. 2018 Apr;50(2):589-603. doi: 10.3758/s13428-017-0887-5.
6
Determining informative priors for cognitive models.
Psychon Bull Rev. 2018 Feb;25(1):114-127. doi: 10.3758/s13423-017-1238-3.
7
Modelling individual difference in visual categorization.
Vis cogn. 2016;24(3):260-283. doi: 10.1080/13506285.2016.1236053. Epub 2016 Nov 10.
8
Bayesian inference with Stan: A tutorial on adding custom distributions.
Behav Res Methods. 2017 Jun;49(3):863-886. doi: 10.3758/s13428-016-0746-9.
9
A simple introduction to Markov Chain Monte-Carlo sampling.
Psychon Bull Rev. 2018 Feb;25(1):143-154. doi: 10.3758/s13423-016-1015-8.
10
The fallacy of placing confidence in confidence intervals.
Psychon Bull Rev. 2016 Feb;23(1):103-23. doi: 10.3758/s13423-015-0947-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验