Annis Jeffrey, Evans Nathan J, Miller Brent J, Palmeri Thomas J
Vanderbilt University.
University of Amsterdam.
J Math Psychol. 2019 Apr;89:67-86. doi: 10.1016/j.jmp.2019.01.005. Epub 2019 Feb 13.
One of the more principled methods of performing model selection is via Bayes factors. However, calculating Bayes factors requires marginal likelihoods, which are integrals over the entire parameter space, making estimation of Bayes factors for models with more than a few parameters a significant computational challenge. Here, we provide a tutorial review of two Monte Carlo techniques rarely used in psychology that efficiently compute marginal likelihoods: (Friel & Pettitt, 2008; Lartillot & Philippe, 2006) and (Xie, Lewis, Fan, Kuo, & Chen, 2011). The methods are general and can be easily implemented in existing MCMC code; we provide both the details for implementation and associated R code for the interested reader. While Bayesian toolkits implementing standard statistical analyses (e.g., JASP Team, 2017; Morey & Rouder, 2015) often compute Bayes factors for the researcher, those using Bayesian approaches to evaluate cognitive models are usually left to compute Bayes factors for themselves. Here, we provide examples of the methods by computing marginal likelihoods for a moderately complex model of choice response time, the Linear Ballistic Accumulator model (Brown & Heathcote, 2008), and compare them to findings of Evans and Brown (2017), who used a brute force technique. We then present a derivation of TI and SS within a hierarchical framework, provide results of a model recovery case study using hierarchical models, and show an application to empirical data. A companion R package is available at the Open Science Framework: https://osf.io/jpnb4.
执行模型选择的一种更具原则性的方法是通过贝叶斯因子。然而,计算贝叶斯因子需要边际似然,而边际似然是在整个参数空间上的积分,这使得对具有多个参数的模型估计贝叶斯因子成为一项重大的计算挑战。在这里,我们提供了对心理学中很少使用的两种蒙特卡罗技术的教程式综述,它们能有效地计算边际似然:(弗里尔和佩蒂特,2008年;拉蒂洛和菲利普,2006年)以及(谢、刘易斯、范、郭和陈,2011年)。这些方法具有通用性,并且可以很容易地在现有的MCMC代码中实现;我们为感兴趣的读者提供了实现细节和相关的R代码。虽然实现标准统计分析的贝叶斯工具包(例如,JASP团队,2017年;莫雷和劳德,2015年)通常会为研究人员计算贝叶斯因子,但那些使用贝叶斯方法评估认知模型的人通常需要自己计算贝叶斯因子。在这里,我们通过为一个中等复杂的选择反应时间模型——线性弹道累加器模型(布朗和希思科特,2008年)计算边际似然来提供这些方法的示例,并将它们与埃文斯和布朗(2017年)使用蛮力技术的研究结果进行比较。然后,我们在分层框架内给出了TI和SS的推导,提供了使用分层模型的模型恢复案例研究的结果,并展示了其在实证数据中的应用。一个配套的R包可在开放科学框架上获取:https://osf.io/jpnb4 。