Suppr超能文献

HH-MOTiF:通过隐马尔可夫模型比较在蛋白质中从头检测短线性基序。

HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons.

机构信息

Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.

Research Group Quantitative Biology and Bioinformatics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Nucleic Acids Res. 2017 Jul 3;45(W1):W470-W477. doi: 10.1093/nar/gkx341.

Abstract

Short linear motifs (SLiMs) in proteins are self-sufficient functional sequences that specify interaction sites for other molecules and thus mediate a multitude of functions. Computational, as well as experimental biological research would significantly benefit, if SLiMs in proteins could be correctly predicted de novo with high sensitivity. However, de novo SLiM prediction is a difficult computational task. When considering recall and precision, the performances of published methods indicate remaining challenges in SLiM discovery. We have developed HH-MOTiF, a web-based method for SLiM discovery in sets of mainly unrelated proteins. HH-MOTiF makes use of evolutionary information by creating Hidden Markov Models (HMMs) for each input sequence and its closely related orthologs. HMMs are compared against each other to retrieve short stretches of homology that represent potential SLiMs. These are transformed to hierarchical structures, which we refer to as motif trees, for further processing and evaluation. Our approach allows us to identify degenerate SLiMs, while still maintaining a reasonably high precision. When considering a balanced measure for recall and precision, HH-MOTiF performs better on test data compared to other SLiM discovery methods. HH-MOTiF is freely available as a web-server at http://hh-motif.biochem.mpg.de.

摘要

短线性基序(SLiMs)是蛋白质中自我充足的功能序列,指定了与其他分子相互作用的位点,从而介导了多种功能。如果能够以高灵敏度正确地从头预测蛋白质中的 SLiMs,计算生物学和实验生物学研究将受益匪浅。然而,从头预测 SLiMs 是一项具有挑战性的计算任务。考虑到召回率和精度,已发表方法的性能表明在 SLiM 发现方面仍然存在挑战。我们开发了 HH-MOTiF,这是一种用于主要不相关蛋白质集的 SLiM 发现的基于网络的方法。HH-MOTiF 通过为每个输入序列及其密切相关的直系同源物创建隐马尔可夫模型(HMM)来利用进化信息。将 HMM 相互比较,以检索代表潜在 SLiMs 的短同源片段。这些被转换为层次结构,我们称之为 motif 树,以便进一步处理和评估。我们的方法允许我们识别简并 SLiMs,同时仍然保持相当高的精度。当考虑召回率和精度的平衡度量时,与其他 SLiM 发现方法相比,HH-MOTiF 在测试数据上的性能更好。HH-MOTiF 可在 http://hh-motif.biochem.mpg.de 作为网络服务器免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ad/5570144/213ce84d6c84/gkx341fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验