Hematopoiesis and Bone Marrow Failure Laboratory, Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA.
BMC Bioinformatics. 2022 Mar 21;23(Suppl 3):98. doi: 10.1186/s12859-022-04625-x.
Although both copy number variations (CNVs) and single nucleotide variations (SNVs) detected by single-cell RNA sequencing (scRNA-seq) are used to study intratumor heterogeneity and detect clonal groups, a software that integrates these two types of data in the same cells is unavailable.
We developed Clonal Architecture with Integration of SNV and CNV (CAISC), an R package for scRNA-seq data analysis that clusters single cells into distinct subclones by integrating CNV and SNV genotype matrices using an entropy weighted approach. The performance of CAISC was tested on simulation data and four real datasets, which confirmed its high accuracy in sub-clonal identification and assignment, including subclones which cannot be identified using one type of data alone. Furthermore, integration of SNV and CNV allowed for accurate examination of expression changes between subclones, as demonstrated by the results from trisomy 8 clones of the myelodysplastic syndromes (MDS) dataset.
CAISC is a powerful tool for integration of CNV and SNV data from scRNA-seq to identify clonal clusters with better accuracy than obtained from a single type of data. CAISC allows users to interactively examine clonal assignments.
虽然通过单细胞 RNA 测序 (scRNA-seq) 检测到的拷贝数变异 (CNVs) 和单核苷酸变异 (SNVs) 都被用于研究肿瘤内异质性和检测克隆群体,但目前还没有一种软件可以将这两种类型的数据整合到同一细胞中。
我们开发了 Clonal Architecture with Integration of SNV and CNV (CAISC),这是一个用于 scRNA-seq 数据分析的 R 包,它通过使用基于熵的方法整合 CNV 和 SNV 基因型矩阵,将单细胞聚类为不同的亚克隆。CAISC 的性能在模拟数据和四个真实数据集上进行了测试,结果证实了其在亚克隆识别和分配方面的高准确性,包括仅使用一种类型的数据无法识别的亚克隆。此外,SNV 和 CNV 的整合允许准确检查亚克隆之间的表达变化,这一点在骨髓增生异常综合征 (MDS) 数据集的 8 三体克隆的结果中得到了证明。
CAISC 是一种强大的工具,用于整合来自 scRNA-seq 的 CNV 和 SNV 数据,以比仅使用一种类型的数据更高的准确性识别克隆簇。CAISC 允许用户交互式地检查克隆分配。