Isobe Sachiko, Shirasawa Kenta, Hirakawa Hideki
Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan.
Breed Sci. 2017 Jan;67(1):35-40. doi: 10.1270/jsbbs.16186. Epub 2017 Feb 24.
The development of next generation sequencing (NGS) technologies has enabled the determination of whole genome sequences in many non-model plant species. However, genome sequencing in sweetpotato ( (L.) Lam) is still difficult because of the hexaploid genome structure. Previous studies suggested that a diploid wild relative, (H.B.K.) Don., is the most possible ancestor of sweetpotato. Therefore, the genetic and genomic features of have been studied as a potential reference for sweetpotato. Meanwhile, several research groups have begun the challenging task of directly sequencing the sweetpotato genome. In this manuscript, we review the recent results and activities of large-scale genome and transcriptome analysis related to genome sequence dissection in sweetpotato under the sections as follows: genome and transcript sequencing, genome sequences of (Japanese morning glory), transcript sequences in sweetpotato, chloroplast sequences, transposable elements and transfer DNA. The recent international activities of whole genome sequencing in sweetpotato are also described. The large-scale publically available genome and transcript sequence resources and the international genome sequencing streams are expected to promote the genome sequence dissection in sweetpotato.
下一代测序(NGS)技术的发展使得许多非模式植物物种的全基因组序列得以确定。然而,由于甘薯(Ipomoea batatas (L.) Lam)的六倍体基因组结构,其基因组测序仍然困难。先前的研究表明,二倍体野生近缘种Ipomoea trifida (H.B.K.) Don.是甘薯最可能的祖先。因此,已经对Ipomoea trifida的遗传和基因组特征进行了研究,作为甘薯的潜在参考。与此同时,几个研究小组已经开始了直接对甘薯基因组进行测序这一具有挑战性的任务。在本手稿中,我们在以下部分回顾了与甘薯基因组序列解析相关的大规模基因组和转录组分析的最新结果与活动:Ipomoea trifida基因组和转录本测序、Ipomoea nil(日本牵牛)的基因组序列、甘薯中的转录本序列、叶绿体序列、转座元件和转移DNA。还描述了甘薯全基因组测序最近的国际活动。大规模公开可用的基因组和转录本序列资源以及国际基因组测序进展有望推动甘薯的基因组序列解析。