Rickgauer J Peter, Grigorieff Nikolaus, Denk Winfried
Howard Hughes Medical Institute, Ashburn, United States.
Department of Electrons - Photons - Neurons, Max Planck Institute of Neurobiology, Martinsried, Germany.
Elife. 2017 May 3;6:e25648. doi: 10.7554/eLife.25648.
We present an approach to study macromolecular assemblies by detecting component proteins' characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and-in the presence of protein background-a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material.
我们提出了一种通过在单电子冷冻显微照片中检测从已知三维结构计算出的组成蛋白的特征性高分辨率投影模式来研究大分子组装体的方法。我们的方法能够在玻璃态冰中以高特异性检测单个脱铁铁蛋白分子,并精确确定其方向和位置。模拟表明,高空间频率信息以及在存在蛋白质背景时的白化滤波器对于最佳检测至关重要,特别是对于远离焦平面拍摄的图像。在实验中,我们能够检测到轮状病毒颗粒内部随机分布在结合位点之间的小病毒RNA聚合酶分子。基于目前可达到的图像质量,我们估计在冰中的检测阈值为150 kDa,在100 nm厚的致密生物材料样品中的检测阈值为300 kDa。