Suppr超能文献

一种用于通过无损分析在三维土壤中识别和分析复杂植物根系的图像处理与分析工具:Root1。

An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1.

作者信息

Flavel Richard J, Guppy Chris N, Rabbi Sheikh M R, Young Iain M

机构信息

School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.

Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.

出版信息

PLoS One. 2017 May 3;12(5):e0176433. doi: 10.1371/journal.pone.0176433. eCollection 2017.

Abstract

The objective of this study was to develop a flexible and free image processing and analysis solution, based on the Public Domain ImageJ platform, for the segmentation and analysis of complex biological plant root systems in soil from x-ray tomography 3D images. Contrasting root architectures from wheat, barley and chickpea root systems were grown in soil and scanned using a high resolution micro-tomography system. A macro (Root1) was developed that reliably identified with good to high accuracy complex root systems (10% overestimation for chickpea, 1% underestimation for wheat, 8% underestimation for barley) and provided analysis of root length and angle. In-built flexibility allowed the user interaction to (a) amend any aspect of the macro to account for specific user preferences, and (b) take account of computational limitations of the platform. The platform is free, flexible and accurate in analysing root system metrics.

摘要

本研究的目的是基于公共领域的ImageJ平台开发一种灵活且免费的图像处理与分析解决方案,用于对土壤中复杂生物植物根系的X射线断层扫描3D图像进行分割和分析。将小麦、大麦和鹰嘴豆根系具有对比性的根系结构种植在土壤中,并使用高分辨率显微断层扫描系统进行扫描。开发了一个宏(Root1),它能以良好到高精度可靠地识别复杂根系(鹰嘴豆高估10%,小麦低估1%,大麦低估8%),并提供根长和角度分析。其内置的灵活性允许用户进行交互:(a)修改宏的任何方面以满足特定用户偏好,(b)考虑平台的计算限制。该平台在分析根系指标方面免费、灵活且准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f0/5415168/b5d46bd3cf08/pone.0176433.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验