Alle Jonas, Gruber Roland, Wörlein Norbert, Uhlmann Norman, Claußen Joelle, Wittenberg Thomas, Gerth Stefan
Fraunhofer Institut für Integrierte Schaltungen (IIS), Fraunhofer Institute for Integrated Circuits Institut für Integrierte Schaltungen (IIS), Division Development Center X-Ray Technology, Fürth, Germany.
Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair for Visual Computing, Erlangen, Germany.
Front Plant Sci. 2023 Apr 4;14:1120189. doi: 10.3389/fpls.2023.1120189. eCollection 2023.
The non-invasive 3D-imaging and successive 3D-segmentation of plant root systems has gained interest within fundamental plant research and selectively breeding resilient crops. Currently the state of the art consists of computed tomography (CT) scans and reconstruction followed by an adequate 3D-segmentation process.
Generating an exact 3D-segmentation of the roots becomes challenging due to inhomogeneous soil composition, as well as high scale variance in the root structures themselves.
(1) We address the challenge by combining deep convolutional neural networks (DCNNs) with a weakly supervised learning paradigm. Furthermore, (2) we apply a spatial pyramid pooling (SPP) layer to cope with the scale variance of roots. (3) We generate a fine-tuned training data set with a specialized sub-labeling technique. (4) Finally, to yield fast and high-quality segmentations, we propose a specialized iterative inference algorithm, which locally adapts the field of view (FoV) for the network.
We compare our segmentation results against an analytical reference algorithm for root segmentation () on a set of roots from Cassava plants and show qualitatively that an increased amount of root voxels and root branches can be segmented.
Our findings show that with the proposed DCNN approach combined with the dynamic inference, much more, and especially fine, root structures can be detected than with a classical analytical reference method.
We show that the application of the proposed DCNN approach leads to better and more robust root segmentation, especially for very small and thin roots.
植物根系的非侵入式三维成像和连续三维分割在基础植物研究和选择性培育抗逆作物方面受到了关注。目前,最先进的技术包括计算机断层扫描(CT)扫描和重建,随后进行适当的三维分割过程。
由于土壤成分不均匀以及根系结构本身的尺度差异很大,生成根系的精确三维分割变得具有挑战性。
(1)我们通过将深度卷积神经网络(DCNN)与弱监督学习范式相结合来应对这一挑战。此外,(2)我们应用空间金字塔池化(SPP)层来处理根系的尺度差异。(3)我们使用一种专门的子标记技术生成一个微调的训练数据集。(4)最后,为了实现快速且高质量的分割,我们提出一种专门的迭代推理算法,该算法为网络局部调整视场(FoV)。
我们将我们的分割结果与一种用于木薯植物根系分割的解析参考算法在一组木薯根系上进行比较,并定性地表明可以分割出更多的根系体素和根分支。
我们的研究结果表明,与经典的解析参考方法相比,通过将所提出的DCNN方法与动态推理相结合,可以检测到更多、尤其是更精细的根系结构。
我们表明,所提出的DCNN方法的应用能够实现更好、更稳健的根系分割,特别是对于非常细小的根系。