Suppr超能文献

基于“亚单倍体”的RAD测序进行全基因组限制性图谱绘制:一种用于物理图谱构建和基因组支架搭建的高效灵活方法。

Whole-Genome Restriction Mapping by "Subhaploid"-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding.

作者信息

Dou Jinzhuang, Dou Huaiqian, Mu Chuang, Zhang Lingling, Li Yangping, Wang Jia, Li Tianqi, Li Yuli, Hu Xiaoli, Wang Shi, Bao Zhenmin

机构信息

Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, China.

出版信息

Genetics. 2017 Jul;206(3):1237-1250. doi: 10.1534/genetics.117.200303. Epub 2017 May 3.

Abstract

Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based "" linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of "subhaploid" fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6-14 kb), with up to 15-fold improvement of N50 (∼816 kb-3.7 Mb) and high scaffolding accuracy (98.1-98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies.

摘要

使用短读长来组装复杂基因组仍然是一项重大挑战,通常会产生高度碎片化的组装结果。生成超高密度连锁图谱有望用于锚定此类组装结果,但传统的连锁图谱构建方法受到减数分裂重组频率低且不均匀的限制,这限制了可达到的图谱分辨率。在这里,我们开发了一种基于测序的“连锁图谱构建方法(称为RadMap),通过生成数百个“亚单倍体”fosmid/细菌人工染色体克隆池,并对这些克隆池进行限制性位点相关DNA测序,以产生超高密度的全基因组限制性图谱,从而实现染色体断裂和分离,以促进基因组支架搭建。我们开发了一种基于自展法的最小生成树算法,用于对全基因组标记进行分组和排序,并在一个用户友好的集成软件包(AMMO)中实现。我们进行了广泛的分析,以验证我们的方法在模式植物和人类中的效能和准确性。我们还证明了RadMap在增强使用短的Illumina读长(300 bp)或长的PacBio读长(6 - 14 kb)生成的各种全基因组鸟枪法组装的连续性方面的效用,N50提高了15倍(约816 kb - 3.7 Mb),且支架搭建准确性高(98.1 - 98.5%)。当输入组装高度碎片化(重叠群N50 = 54 kb)时,RadMap优于BioNano和Hi-C。RadMap可以捕获广泛的连续性信息,并为高度碎片化组装的高分辨率物理图谱构建和支架搭建提供一种高效且灵活的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224a/5500127/9e09f3871883/1237fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验