Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Sci Rep. 2017 May 3;7(1):1417. doi: 10.1038/s41598-017-01649-9.
Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipid-laden plaques, as it provides simultaneous morphological and lipid-specific chemical information of an artery wall. Real-time imaging and display at video-rate speed are critical for clinical utility of the IVPA-US imaging technology. Here, we demonstrate a portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter size, differentiated A-line strategy, and real-time image processing and display algorithms. Spatial resolution, chemical specificity, and capability for imaging highly dynamic objects were evaluated by phantoms to characterize system performance. An imaging speed of 16 frames per second was determined to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology. Thus, this high-speed IVPA-US imaging system presents significant advances in the translational intravascular and other endoscopic applications.
血管内光声超声(IVPA-US)成像技术是一种新兴的混合模态,用于检测富含脂质的斑块,因为它提供了动脉壁的形态和脂质特异性化学信息的同步信息。实时成像和以视频速率显示对于 IVPA-US 成像技术的临床应用至关重要。在这里,我们展示了一种能够以高达每秒 25 帧的速度进行实时显示模式成像的便携式 IVPA-US 系统。这种前所未有的成像速度是通过在激发激光源、旋转接头组件、1mm IVPA-US 导管尺寸、差异化 A 线策略以及实时图像处理和显示算法方面的同步创新实现的。通过体模评估空间分辨率、化学特异性和成像高动态物体的能力来表征系统性能。确定每秒 16 帧的成像速度足以抑制心脏搏动的运动伪影,用于体内应用。通过以每秒 16 帧的速度对动脉粥样硬化人类冠状动脉进行离体成像,验证了该系统检测富含脂质斑块的转化能力,该成像与金标准组织病理学具有很强的相关性。因此,这种高速 IVPA-US 成像系统在血管内和其他内窥镜应用的转化方面取得了重大进展。