Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA.
Sci Rep. 2018 Feb 5;8(1):2400. doi: 10.1038/s41598-018-20881-5.
Intravascular photoacoustic tomography is an emerging technology for mapping lipid deposition within an arterial wall for the investigation of the vulnerability of atherosclerotic plaques to rupture. By converting localized laser absorption in lipid-rich biological tissue into ultrasonic waves through thermoelastic expansion, intravascular photoacoustic tomography is uniquely capable of imaging the entire arterial wall with chemical selectivity and depth resolution. However, technical challenges, including an imaging catheter with sufficient sensitivity and depth and a functional sheath material without significant signal attenuation and artifact generation for both photoacoustics and ultrasound, have prevented in vivo application of intravascular photoacoustic imaging for clinical translation. Here, we present a highly sensitive quasi-collinear dual-mode photoacoustic/ultrasound catheter with elaborately selected sheath material, and demonstrated the performance of our intravascular photoacoustic tomography system by in vivo imaging of lipid distribution in rabbit aortas under clinically relevant conditions at imaging speeds up to 16 frames per second. Ex vivo evaluation of fresh human coronary arteries further confirmed the performance of our imaging system for accurate lipid localization and quantification of the entire arterial wall, indicating its clinical significance and translational capability.
血管内光声断层摄影术是一种新兴的技术,用于绘制动脉壁内的脂质沉积,以研究动脉粥样硬化斑块的易损性。通过将富含脂质的生物组织中的局部激光吸收转化为超声波通过热弹性膨胀,血管内光声断层摄影术具有独特的能力,可以对整个动脉壁进行成像,具有化学选择性和深度分辨率。然而,技术挑战,包括具有足够灵敏度和深度的成像导管,以及用于光声和超声的功能护套材料,没有显著的信号衰减和伪影产生,阻止了血管内光声成像的体内应用,以实现临床转化。在这里,我们提出了一种具有高灵敏度的准共线双模光声/超声导管,并精心选择了护套材料,通过在临床相关条件下以高达每秒 16 帧的速度对兔主动脉中的脂质分布进行体内成像,展示了我们的血管内光声断层摄影系统的性能。对新鲜的人类冠状动脉的离体评估进一步证实了我们的成像系统对整个动脉壁的准确脂质定位和定量的性能,表明了其临床意义和转化能力。