Larner Stephen F, Wang Jonathan, Goodman Jared, Altman Megan B O'Donoghue, Xin Meiguo, Wang Kevin K W
Department of Neuroscience, University of Florida, Gainesville, FL, USA.
Program for Neurotrauma, Neuroproteomics & Biomarkers Research, University of Florida, Gainesville, FL, USA.
J Cell Death. 2017 Mar 23;10:1179670717694523. doi: 10.1177/1179670717694523. eCollection 2017.
Laboratory and industrial production of various nanoparticles, single-walled nanotubes (SWNTs), fullerene (C60), cadmium selenide (CdSe) quantum dots, carbon black (CB), and dye-doped silica nanospheres (NSs), has greatly increased in the past 15 years. However, little research has been done to analyze the toxicity of these materials. With recent studies showing that nano-substances can cross the blood-brain barrier, we examined the neurotoxicity of these manufactured nanoparticles. By employing the rat PC-12 neuronal-like cell line as the basis for our studies, we were able to evaluate the toxicity caused by these five nanoparticles. The level of toxicity was measured by testing for cell viability using the lactate dehydrogenase (LDH) cell viability assay, morphological analysis of changes in cellular structures, and Western blot analyses of αII-spectrin breakdown products (SBDP) as cell death indicators. Our results showed cytotoxicity in nondifferentiated PC-12 cells exposed to CB (10-100 μg/mL), SWNTs (10-100 μg/mL), C60 (100 μg/mL), CdSe (10 μg/mL), CB (500 μg/mL), and dye-doped silicon NSs (10 μg/mL). Exposure to higher concentrations (100 μg/mL) of SWNTs, CB, and C60 increased the formation of SBDP150/145, as well as cell membrane contraction and the formation of cytosolic vacuoles. The incorporations of the nanoparticles into cell cytoplasm were observed using the fluorescent dye-doped NSs in both nondifferentiated and nerve growth factor (NGF)-differentiated PC-12 cells. When PC-12 cells are differentiated, they appeared to be even more sensitive to cytotoxicity of nanoparticles such as CB 10 nm (10-100 μg/mL), CB 100 nm (10-100 μg/mL), and CdSe (1-10 μg/mL).
在过去15年里,各种纳米颗粒、单壁纳米管(SWNTs)、富勒烯(C60)、硒化镉(CdSe)量子点、炭黑(CB)以及染料掺杂二氧化硅纳米球(NSs)的实验室和工业产量大幅增加。然而,对这些材料毒性的分析研究却很少。近期研究表明纳米物质能够穿过血脑屏障,我们因此对这些人造纳米颗粒的神经毒性进行了研究。通过将大鼠PC - 12神经元样细胞系作为研究基础,我们得以评估这五种纳米颗粒所造成的毒性。毒性水平通过使用乳酸脱氢酶(LDH)细胞活力测定法检测细胞活力、对细胞结构变化进行形态学分析以及对αII - 血影蛋白降解产物(SBDP)进行蛋白质免疫印迹分析作为细胞死亡指标来衡量。我们的结果显示,暴露于CB(10 - 100μg/mL)、SWNTs(10 - 100μg/mL)、C60(100μg/mL)、CdSe(10μg/mL)、CB(500μg/mL)和染料掺杂硅NSs(10μg/mL)的未分化PC - 12细胞具有细胞毒性。暴露于较高浓度(100μg/mL)的SWNTs、CB和C60会增加SBDP150/145的形成,以及细胞膜收缩和胞质空泡的形成。在未分化和神经生长因子(NGF)分化的PC - 12细胞中,使用荧光染料掺杂的NSs观察到纳米颗粒进入细胞质。当PC - 12细胞分化时,它们似乎对纳米颗粒如10nm的CB(10 - 100μg/mL)、100nm的CB(10 - 100μg/mL)和CdSe(1 - 10μg/mL)的细胞毒性更为敏感。