Suppr超能文献

利用全基因组单核苷酸多态性进行玉米耐旱性的基因组选择

Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize.

作者信息

Shikha Mittal, Kanika Arora, Rao Atmakuri Ramakrishna, Mallikarjuna Mallana Gowdra, Gupta Hari Shanker, Nepolean Thirunavukkarasu

机构信息

Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India.

Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research InstituteNew Delhi, India.

出版信息

Front Plant Sci. 2017 Apr 21;8:550. doi: 10.3389/fpls.2017.00550. eCollection 2017.

Abstract

Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS) has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B) were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis). Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.

摘要

传统的基于表型性状选择优良基因型的育种策略已被证明成效有限,因为这种直接选择受到低遗传力、诸如上位性等基因相互作用、环境-基因型相互作用以及多基因效应的阻碍。随着新基因组工具的出现,育种者为选择优良品种开辟了一条道路。基因组选择(GS)已成为预测基因型表现的最重要方法之一。在此,我们使用29,619个经过校正的单核苷酸多态性(SNP)对240个在不同环境下进行干旱表型分析的亚热带玉米品系的育种值进行了测试。对七个基因组选择模型(岭回归、套索回归、弹性网络、随机森林、再生核希尔伯特空间、贝叶斯A和贝叶斯B)的农艺性状预测准确性进行了测试。尽管贝叶斯B、贝叶斯A和再生核希尔伯特空间的预测准确性相当,但贝叶斯B在所有三种环境中的预测值最高,优于其他模型。从贝叶斯B模型中,在所有数据集中选择了一组具有较高标记效应的前1053个显著SNP,以验证基因和数量性状位点(QTL)。在这1053个SNP中,有77个SNP与10个干旱响应转录因子相关。这些转录因子与不同的生理和分子功能(气孔关闭、根系发育、激素信号传导和光合作用)相关。在几个模型中,贝叶斯B已被证明对我们的数据集具有最高水平的预测准确性。我们实验还根据几个SNP的表现及其对耐旱性的相对重要性进行了重点研究。我们的实验结果对于选择优良基因型和培育耐旱玉米杂交种的候选基因具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a35f/5399777/bef623ec3cd1/fpls-08-00550-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验