Zhu Wen, Richards Nigel G J
School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
Essays Biochem. 2017 May 9;61(2):259-270. doi: 10.1042/EBC20160070.
Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of 'second-shell' hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.
已知极少有酶会利用单核锰离子,该离子在催化过程中会发生氧化还原状态的变化。关于底物结合和/或蛋白质环境在调节酶结合的Mn(II)的氧化还原特性中的作用、催化机制中涉及的双氧物种的性质,以及鉴于细胞中的许多其他金属离子会形成更稳定的蛋白质复合物,这些酶如何获取Mn(II)等问题仍有待解答。在此,我们总结了关于五种单核锰依赖性酶的结构和机制的现有知识:超氧化物歧化酶、草酸氧化酶(OxOx)、草酸脱羧酶(OxDC)、高龙胆酸3,4-双加氧酶和脂氧合酶(LOX)。光谱测量和/或计算研究表明,Mn(III)/Mn(II)是金属的催化活性氧化态,并且已经在许多实例中证明了与金属配体的“第二壳层”氢键相互作用的重要性。这些酶调节Mn(III)/Mn(II)电对氧化还原特性的能力,从而使它们能够产生基于底物的自由基,对于获得对生命各分支中的生物体至关重要的各种基本化学性质似乎至关重要。