Suppr超能文献

通过哺乳动物细胞中的基因筛选阐明药物靶点和作用机制。

Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells.

作者信息

Kampmann Martin

机构信息

Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco and Chan Zuckerberg Biohub, San Francisco, California, USA.

出版信息

Chem Commun (Camb). 2017 Jun 29;53(53):7162-7167. doi: 10.1039/c7cc02349a.

Abstract

Phenotypic screening is a powerful approach to discover small molecules with desired effects on biological systems, which can then be developed into therapeutic drugs. The identification of the target and mechanism of action of compounds discovered in phenotypic screens remains a major challenge. This feature article describes the use of genetic tools to reveal drug targets and mechanisms in mammalian cells. Until recently, RNA interference was the method of choice for such studies. Here, we highlight very recent additions to the genetic toolkit in mammalian cells, including CRISPR, CRISPR interference, and CRISPR activation, and illustrate their usefulness for drug target identification.

摘要

表型筛选是一种发现对生物系统具有预期作用的小分子的有效方法,这些小分子随后可被开发成治疗药物。确定在表型筛选中发现的化合物的靶点和作用机制仍然是一项重大挑战。这篇专题文章描述了利用遗传工具来揭示哺乳动物细胞中的药物靶点和作用机制。直到最近,RNA干扰一直是此类研究的首选方法。在这里,我们重点介绍哺乳动物细胞遗传工具包中最新增加的工具,包括CRISPR、CRISPR干扰和CRISPR激活,并举例说明它们在药物靶点识别方面的用途。

相似文献

1
Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells.
Chem Commun (Camb). 2017 Jun 29;53(53):7162-7167. doi: 10.1039/c7cc02349a.
2
CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
Nat Biotechnol. 2016 Jun;34(6):631-3. doi: 10.1038/nbt.3536. Epub 2016 Apr 25.
3
Small molecules enhance CRISPR genome editing in pluripotent stem cells.
Cell Stem Cell. 2015 Feb 5;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
4
'Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development'.
Curr Opin Chem Biol. 2020 Jun;56:91-97. doi: 10.1016/j.cbpa.2020.03.003. Epub 2020 May 3.
5
Engineering Forward Genetics into Cultured Cancer Cells for Chemical Target Identification.
Cell Chem Biol. 2019 Sep 19;26(9):1315-1321.e3. doi: 10.1016/j.chembiol.2019.06.006. Epub 2019 Jul 11.
6
High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
FEBS J. 2015 Jun;282(11):2089-96. doi: 10.1111/febs.13251. Epub 2015 Mar 16.
7
Genetic screens and functional genomics using CRISPR/Cas9 technology.
FEBS J. 2015 Apr;282(8):1383-93. doi: 10.1111/febs.13248. Epub 2015 Mar 16.
9
Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.
Nucleic Acids Res. 2015 Apr 20;43(7):3407-19. doi: 10.1093/nar/gkv226. Epub 2015 Mar 23.
10
Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
Front Immunol. 2022 May 16;13:884561. doi: 10.3389/fimmu.2022.884561. eCollection 2022.

引用本文的文献

1
Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges.
Stem Cell Res Ther. 2024 Jul 19;15(1):218. doi: 10.1186/s13287-024-03831-z.
2
A Targeted Genome-scale Overexpression Platform for Proteobacteria.
bioRxiv. 2024 Mar 4:2024.03.01.582922. doi: 10.1101/2024.03.01.582922.
4
A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities.
Cell Chem Biol. 2022 Aug 18;29(8):1303-1316.e3. doi: 10.1016/j.chembiol.2022.06.006. Epub 2022 Jul 12.
5
Nucleolus localization of SpyCas9 affects its stability and interferes with host protein translation in mammalian cells.
Genes Dis. 2020 Sep 25;9(3):731-740. doi: 10.1016/j.gendis.2020.09.003. eCollection 2022 May.
6
Target identification of mouse stem cell probe CDy1 as ALDH2 and Abcb1b through live-cell affinity-matrix and ABC CRISPRa library.
RSC Chem Biol. 2021 Aug 20;2(6):1590-1593. doi: 10.1039/d1cb00147g. eCollection 2021 Dec 2.
7
Genomic and Targeted Approaches Unveil the Cell Membrane as a Major Target of the Antifungal Cytotoxin Amantelide A.
Chembiochem. 2021 May 14;22(10):1790-1799. doi: 10.1002/cbic.202000685. Epub 2021 Mar 23.
9
Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems.
Front Bioeng Biotechnol. 2020 Jul 28;8:882. doi: 10.3389/fbioe.2020.00882. eCollection 2020.
10
Cellular response to small molecules that selectively stall protein synthesis by the ribosome.
PLoS Genet. 2019 Mar 15;15(3):e1008057. doi: 10.1371/journal.pgen.1008057. eCollection 2019 Mar.

本文引用的文献

1
Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia.
Blood. 2017 Jun 1;129(22):3000-3008. doi: 10.1182/blood-2017-02-766204. Epub 2017 Apr 19.
3
Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.
Cancer Discov. 2016 Aug;6(8):914-29. doi: 10.1158/2159-8290.CD-16-0154. Epub 2016 Jun 3.
4
Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis.
Cancer Cell. 2015 Nov 9;28(5):653-665. doi: 10.1016/j.ccell.2015.10.002.
6
Next-generation libraries for robust RNA interference-based genome-wide screens.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):E3384-91. doi: 10.1073/pnas.1508821112. Epub 2015 Jun 15.
8
Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound.
Science. 2015 May 29;348(6238):1027-30. doi: 10.1126/science.aaa6986. Epub 2015 Apr 9.
9
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.
Cell. 2014 Oct 23;159(3):647-61. doi: 10.1016/j.cell.2014.09.029. Epub 2014 Oct 9.
10
Unraveling the mechanism of cell death induced by chemical fibrils.
Nat Chem Biol. 2014 Nov;10(11):969-76. doi: 10.1038/nchembio.1639. Epub 2014 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验