Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America.
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States of America.
PLoS Genet. 2019 Mar 15;15(3):e1008057. doi: 10.1371/journal.pgen.1008057. eCollection 2019 Mar.
Identifying small molecules that inhibit protein synthesis by selectively stalling the ribosome constitutes a new strategy for therapeutic development. Compounds that inhibit the translation of PCSK9, a major regulator of low-density lipoprotein cholesterol, have been identified that reduce LDL cholesterol in preclinical models and that affect the translation of only a few off-target proteins. Although some of these compounds hold potential for future therapeutic development, it is not known how they impact the physiology of cells or ribosome quality control pathways. Here we used a genome-wide CRISPRi screen to identify proteins and pathways that modulate cell growth in the presence of high doses of a selective PCSK9 translational inhibitor, PF-06378503 (PF8503). The two most potent genetic modifiers of cell fitness in the presence of PF8503, the ubiquitin binding protein ASCC2 and helicase ASCC3, bind to the ribosome and protect cells from toxic effects of high concentrations of the compound. Surprisingly, translation quality control proteins Pelota (PELO) and HBS1L sensitize cells to PF8503 treatment. In genetic interaction experiments, ASCC3 acts together with ASCC2, and functions downstream of HBS1L. Taken together, these results identify new connections between ribosome quality control pathways, and provide new insights into the selectivity of compounds that stall human translation that will aid the development of next-generation selective translation stalling compounds to treat disease.
鉴定通过选择性stall 核糖体来抑制蛋白质合成的小分子化合物,构成了治疗开发的新策略。已经鉴定出了抑制 PCSK9(一种主要的 LDL 胆固醇调节剂)翻译的化合物,这些化合物可降低临床前模型中的 LDL 胆固醇,并仅影响少数脱靶蛋白的翻译。尽管这些化合物中的一些具有未来治疗开发的潜力,但尚不清楚它们如何影响细胞的生理学或核糖体质量控制途径。在这里,我们使用全基因组 CRISPRi 筛选来鉴定在高剂量选择性 PCSK9 翻译抑制剂 PF-06378503(PF8503)存在下调节细胞生长的蛋白质和途径。在 PF8503 存在下,两种最有效的细胞适应性遗传修饰物是泛素结合蛋白 ASCC2 和解旋酶 ASCC3,它们与核糖体结合并保护细胞免受高浓度化合物的毒性影响。令人惊讶的是,翻译质量控制蛋白 Pelota(PELO)和 HBS1L 使细胞对 PF8503 治疗敏感。在遗传相互作用实验中,ASCC3 与 ASCC2 一起作用,并在 HBS1L 下游发挥作用。总而言之,这些结果鉴定了核糖体质量控制途径之间的新联系,并为stall 人类翻译的化合物的选择性提供了新的见解,这将有助于开发下一代选择性翻译stall 化合物来治疗疾病。