Suppr超能文献

基于具有最优取向线扩散函数空间核的双边滤波器的视网膜图像去噪

Retinal Image Denoising via Bilateral Filter with a Spatial Kernel of Optimally Oriented Line Spread Function.

作者信息

He Yunlong, Zheng Yuanjie, Zhao Yanna, Ren Yanju, Lian Jian, Gee James

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China.

School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Life Sciences, Shandong Normal University, Jinan 250014, China; Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan 250014, China.

出版信息

Comput Math Methods Med. 2017;2017:1769834. doi: 10.1155/2017/1769834. Epub 2017 Feb 5.

Abstract

Filtering belongs to the most fundamental operations of retinal image processing and for which the value of the filtered image at a given location is a function of the values in a local window centered at this location. However, preserving thin retinal vessels during the filtering process is challenging due to vessels' small area and weak contrast compared to background, caused by the limited resolution of imaging and less blood flow in the vessel. In this paper, we present a novel retinal image denoising approach which is able to preserve the details of retinal vessels while effectively eliminating image noise. Specifically, our approach is carried out by determining an optimal spatial kernel for the bilateral filter, which is represented by a line spread function with an orientation and scale adjusted adaptively to the local vessel structure. Moreover, this approach can also be served as a preprocessing tool for improving the accuracy of the vessel detection technique. Experimental results show the superiority of our approach over state-of-the-art image denoising techniques such as the bilateral filter.

摘要

滤波属于视网膜图像处理中最基本的操作,在给定位置处滤波后图像的值是以此位置为中心的局部窗口中各值的函数。然而,在滤波过程中保留细小的视网膜血管具有挑战性,这是由于成像分辨率有限以及血管中血流较少,导致血管与背景相比面积小且对比度弱。在本文中,我们提出了一种新颖的视网膜图像去噪方法,该方法能够在有效消除图像噪声的同时保留视网膜血管的细节。具体而言,我们的方法是通过为双边滤波器确定一个最优空间核来实现的,该核由一个线扩散函数表示,其方向和尺度会根据局部血管结构进行自适应调整。此外,该方法还可作为一种预处理工具,用于提高血管检测技术的准确性。实验结果表明,我们的方法优于诸如双边滤波器等当前最先进的图像去噪技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e48/5316463/ef23b6dee7a3/CMMM2017-1769834.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验