Suppr超能文献

新生听觉皮层中至γ-氨基丁酸能中间神经元的不同跨层谷氨酸能回路。

Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex.

作者信息

Deng Rongkang, Kao Joseph P Y, Kanold Patrick O

机构信息

Department of Biology, University of Maryland, College Park, MD 20742, USA.

Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

Cell Rep. 2017 May 9;19(6):1141-1150. doi: 10.1016/j.celrep.2017.04.044.

Abstract

GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (<P7) receive extensive translaminar glutamatergic input via NMDAR-only synapses. Extensive translaminar AMPAR-mediated input developed during the second postnatal week, whereas NMDAR-only presynaptic connections decreased. GABAergic interneurons showed two spatial patterns of translaminar connection: inputs originating predominantly from supragranular or from supragranular and infragranular layers, including the subplate, which relays early thalamocortical activity. Sensory deprivation altered the development of translaminar inputs. Thus, distinct translaminar circuits to GABAergic interneurons exist throughout development, and the maturation of excitatory synapses is input-specific. Glutamatergic signaling from subplate and intracortical sources likely plays a role in the maturation of GABAergic interneurons.

摘要

γ-氨基丁酸能(GABAergic)活动在新皮层发育和可塑性中起着重要作用。由于GABA能中间神经元的成熟受神经活动调节,因此GABA能中间神经元兴奋性输入的来源在发育中起关键作用。我们通过激光扫描光刺激表明,新生小鼠(<P7)听觉皮层中的第4层和第5层GABA能中间神经元通过仅含N-甲基-D-天冬氨酸受体(NMDAR)的突触接受广泛的跨层谷氨酸能输入。广泛的跨层α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)介导的输入在出生后第二周出现,而仅含NMDAR的突触前连接减少。GABA能中间神经元表现出两种跨层连接的空间模式:输入主要来自颗粒上层或颗粒上层和颗粒下层,包括中继早期丘脑皮质活动的板下带。感觉剥夺改变了跨层输入的发育。因此,在整个发育过程中存在到GABA能中间神经元的不同跨层回路,并且兴奋性突触的成熟是输入特异性的。来自板下带和皮质内来源的谷氨酸能信号可能在GABA能中间神经元的成熟中起作用。

相似文献

1
Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex.
Cell Rep. 2017 May 9;19(6):1141-1150. doi: 10.1016/j.celrep.2017.04.044.
3
Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex.
J Neurophysiol. 2018 Dec 1;120(6):3063-3076. doi: 10.1152/jn.00495.2018. Epub 2018 Oct 10.
4
Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex.
J Neurosci. 2014 Jun 25;34(26):8855-64. doi: 10.1523/JNEUROSCI.0233-14.2014.
7
Tonic Activation of GluN2C/GluN2D-Containing NMDA Receptors by Ambient Glutamate Facilitates Cortical Interneuron Maturation.
J Neurosci. 2019 May 8;39(19):3611-3626. doi: 10.1523/JNEUROSCI.1392-18.2019. Epub 2019 Mar 7.
9
NMDA receptor-dependent function and plasticity in inhibitory circuits.
Neuropharmacology. 2013 Nov;74:23-31. doi: 10.1016/j.neuropharm.2013.03.004. Epub 2013 Mar 26.
10
Properties of a population of GABAergic cells in murine auditory cortex weakly excited by thalamic stimulation.
J Neurophysiol. 2006 Dec;96(6):3194-208. doi: 10.1152/jn.00484.2006. Epub 2006 Sep 13.

引用本文的文献

1
Sequential maturation of stimulus-specific adaptation in the mouse lemniscal auditory system.
Sci Adv. 2024 Jan 5;10(1):eadi7624. doi: 10.1126/sciadv.adi7624. Epub 2024 Jan 3.
2
Changing subplate circuits: Early activity dependent circuit plasticity.
Front Cell Neurosci. 2023 Jan 11;16:1067365. doi: 10.3389/fncel.2022.1067365. eCollection 2022.
4
The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices.
Front Neural Circuits. 2022 Apr 7;16:866999. doi: 10.3389/fncir.2022.866999. eCollection 2022.
5
Early brain activity: Translations between bedside and laboratory.
Prog Neurobiol. 2022 Jun;213:102268. doi: 10.1016/j.pneurobio.2022.102268. Epub 2022 Mar 29.
7
8
Development of Auditory Cortex Circuits.
J Assoc Res Otolaryngol. 2021 Jun;22(3):237-259. doi: 10.1007/s10162-021-00794-3. Epub 2021 Apr 28.
10

本文引用的文献

1
Ncm, a Photolabile Group for Preparation of Caged Molecules: Synthesis and Biological Application.
PLoS One. 2016 Oct 3;11(10):e0163937. doi: 10.1371/journal.pone.0163937. eCollection 2016.
2
Molecularly Defined Subplate Neurons Project Both to Thalamocortical Recipient Layers and Thalamus.
Cereb Cortex. 2017 Oct 1;27(10):4759-4768. doi: 10.1093/cercor/bhw271.
4
Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits.
Neuron. 2016 Feb 3;89(3):521-35. doi: 10.1016/j.neuron.2015.11.020.
5
Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity.
Cereb Cortex. 2016 Jun;26(6):2612-25. doi: 10.1093/cercor/bhv099. Epub 2015 May 15.
6
Sensory inputs control the integration of neurogliaform interneurons into cortical circuits.
Nat Neurosci. 2015 Mar;18(3):393-401. doi: 10.1038/nn.3946. Epub 2015 Feb 9.
7
Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex.
J Neurosci. 2014 Jun 25;34(26):8855-64. doi: 10.1523/JNEUROSCI.0233-14.2014.
8
Interneuron cell types are fit to function.
Nature. 2014 Jan 16;505(7483):318-26. doi: 10.1038/nature12983.
9
AMPA-silent synapses in brain development and pathology.
Nat Rev Neurosci. 2013 Dec;14(12):839-50. doi: 10.1038/nrn3642. Epub 2013 Nov 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验