Suppr超能文献

用于阿尔茨海默病预测的功能网络跨模态学习

Transmodal Learning of Functional Networks for Alzheimer's Disease Prediction.

作者信息

Rahim Mehdi, Thirion Bertrand, Comtat Claude, Varoquaux Gaël

机构信息

Parietal project team - INRIA Saclay and with IMIV team - CEA Saclay DRF/I2BM/NeuroSpin and SHFJ. Paris-Saclay University. France.

Parietal project team - INRIA Saclay and CEA Saclay DRF/I2BM/NeuroSpin. Paris-Saclay University. France.

出版信息

IEEE J Sel Top Signal Process. 2016 Oct;10(7):120-1213. doi: 10.1109/JSTSP.2016.2600400. Epub 2016 Aug 15.

Abstract

Functional connectivity describes neural activity from resting-state functional magnetic resonance imaging (rs-fMRI). This noninvasive modality is a promising imaging biomarker of neurodegenerative diseases, such as Alzheimer's disease (AD), where the connectome can be an indicator to assess and to understand the pathology. However, it only provides noisy measurements of brain activity. As a consequence, it has shown fairly limited discrimination power on clinical groups. So far, the reference functional marker of AD is the fluorodeoxyglucose positron emission tomography (FDG-PET). It gives a reliable quantification of metabolic activity, but it is costly and invasive. Here, our goal is to analyze AD populations solely based on rs-fMRI, as functional connectivity is correlated to metabolism. We introduce : leveraging a prior from one modality to improve results of another modality on different subjects. A metabolic prior is learned from an independent FDG-PET dataset to improve functional connectivity-based prediction of AD. The prior acts as a regularization of connectivity learning and improves the estimation of discriminative patterns from distinct rs-fMRI datasets. Our approach is a two-stage classification strategy that combines several seed-based connectivity maps to cover a large number of functional networks that identify AD physiopathology. Experimental results show that our transmodal approach increases classification accuracy compared to pure rs-fMRI approaches, without resorting to additional invasive acquisitions. The method successfully recovers brain regions known to be impacted by the disease.

摘要

功能连接性描述了静息态功能磁共振成像(rs-fMRI)中的神经活动。这种非侵入性模态是神经退行性疾病(如阿尔茨海默病(AD))的一种很有前景的成像生物标志物,在AD中,连接组可以作为评估和理解病理的一个指标。然而,它只能提供大脑活动的噪声测量。因此,它在临床组上的鉴别能力相当有限。到目前为止,AD的参考功能标志物是氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)。它能可靠地量化代谢活动,但成本高昂且具有侵入性。在这里,我们的目标是仅基于rs-fMRI分析AD人群,因为功能连接性与代谢相关。我们引入:利用一种模态的先验信息来改善不同受试者上另一种模态的结果。从一个独立的FDG-PET数据集中学习代谢先验信息,以改善基于功能连接性的AD预测。该先验作为连接性学习的正则化,并改善了从不同rs-fMRI数据集中对鉴别模式的估计。我们的方法是一种两阶段分类策略,它结合了几个基于种子的连接性图谱,以覆盖大量识别AD生理病理学的功能网络。实验结果表明,与纯rs-fMRI方法相比,我们的跨模态方法提高了分类准确率,而无需借助额外的侵入性采集。该方法成功地恢复了已知受该疾病影响的脑区。

相似文献

1
Transmodal Learning of Functional Networks for Alzheimer's Disease Prediction.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):120-1213. doi: 10.1109/JSTSP.2016.2600400. Epub 2016 Aug 15.
4
Simultaneous resting-state FDG-PET/fMRI in Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity.
Neuroimage. 2018 Aug 1;176:246-258. doi: 10.1016/j.neuroimage.2018.04.048. Epub 2018 Apr 27.
6
Neuroinflammation and Functional Connectivity in Alzheimer's Disease: Interactive Influences on Cognitive Performance.
J Neurosci. 2019 Sep 4;39(36):7218-7226. doi: 10.1523/JNEUROSCI.2574-18.2019. Epub 2019 Jul 18.
8
Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease.
Front Neurosci. 2023 Jun 30;17:1222751. doi: 10.3389/fnins.2023.1222751. eCollection 2023.

引用本文的文献

1
Dynamically weighted graph neural network for detection of early mild cognitive impairment.
PLoS One. 2025 Jun 4;20(6):e0323894. doi: 10.1371/journal.pone.0323894. eCollection 2025.
4
Prediction of cognitive performance differences in older age from multimodal neuroimaging data.
Geroscience. 2024 Feb;46(1):283-308. doi: 10.1007/s11357-023-00831-4. Epub 2023 Jun 13.
5
Integrating multiple brain imaging modalities does not boost prediction of subclinical atherosclerosis in midlife adults.
Neuroimage Clin. 2022;35:103134. doi: 10.1016/j.nicl.2022.103134. Epub 2022 Jul 29.
6
Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging.
Neurobiol Aging. 2022 Oct;118:55-65. doi: 10.1016/j.neurobiolaging.2022.06.008. Epub 2022 Jun 28.
7
Analyzing Hierarchical Multi-View MRI Data With StaPLR: An Application to Alzheimer's Disease Classification.
Front Neurosci. 2022 Apr 25;16:830630. doi: 10.3389/fnins.2022.830630. eCollection 2022.
8
Advanced Brain-Age in Psychotic Psychopathology: Evidence for Transdiagnostic Neurodevelopmental Origins.
Front Aging Neurosci. 2022 Apr 22;14:872867. doi: 10.3389/fnagi.2022.872867. eCollection 2022.
9
Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability.
PLoS Comput Biol. 2021 Mar 5;17(3):e1008347. doi: 10.1371/journal.pcbi.1008347. eCollection 2021 Mar.
10
Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging.
Front Neurosci. 2018 Aug 6;12:525. doi: 10.3389/fnins.2018.00525. eCollection 2018.

本文引用的文献

1
Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years.
PLoS One. 2015 Oct 30;10(10):e0140134. doi: 10.1371/journal.pone.0140134. eCollection 2015.
3
Domain Transfer Learning for MCI Conversion Prediction.
IEEE Trans Biomed Eng. 2015 Jul;62(7):1805-1817. doi: 10.1109/TBME.2015.2404809. Epub 2015 Mar 2.
4
Default-mode network functional connectivity is closely related to metabolic activity.
Hum Brain Mapp. 2015 Jun;36(6):2027-38. doi: 10.1002/hbm.22753. Epub 2015 Feb 3.
5
Measuring brain atrophy with a generalized formulation of the boundary shift integral.
Neurobiol Aging. 2015 Jan;36 Suppl 1(Suppl 1):S81-90. doi: 10.1016/j.neurobiolaging.2014.04.035. Epub 2014 Aug 29.
6
Which fMRI clustering gives good brain parcellations?
Front Neurosci. 2014 Jul 1;8:167. doi: 10.3389/fnins.2014.00167. eCollection 2014.
7
Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database.
Brain Connect. 2014 Oct;4(8):575-86. doi: 10.1089/brain.2013.0221. Epub 2014 Jul 31.
8
Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.
J Neurosci. 2014 Apr 30;34(18):6260-6. doi: 10.1523/JNEUROSCI.0492-14.2014.
9
Machine learning for neuroimaging with scikit-learn.
Front Neuroinform. 2014 Feb 21;8:14. doi: 10.3389/fninf.2014.00014. eCollection 2014.
10
Functional brain connectivity using fMRI in aging and Alzheimer's disease.
Neuropsychol Rev. 2014 Mar;24(1):49-62. doi: 10.1007/s11065-014-9249-6. Epub 2014 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验