Suppr超能文献

基于阿尔茨海默病神经影像倡议数据库的稀疏表示的内在功能成分分析

Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database.

作者信息

Jiang Xi, Zhang Xin, Zhu Dajiang

机构信息

1 Cortical Architecture Imaging and Discovery Lab, Department of Computer Science, Boyd Graduate Studies Research Center, The University of Georgia , Athens, Georgia .

出版信息

Brain Connect. 2014 Oct;4(8):575-86. doi: 10.1089/brain.2013.0221. Epub 2014 Jul 31.

Abstract

Alzheimer's disease (AD) is the most common type of dementia (accounting for 60% to 80%) and is the fifth leading cause of death for those people who are 65 or older. By 2050, one new case of AD in United States is expected to develop every 33 sec. Unfortunately, there is no available effective treatment that can stop or slow the death of neurons that causes AD symptoms. On the other hand, it is widely believed that AD starts before development of the associated symptoms, so its prestages, including mild cognitive impairment (MCI) or even significant memory concern (SMC), have received increasing attention, not only because of their potential as a precursor of AD, but also as a possible predictor of conversion to other neurodegenerative diseases. Although these prestages have been defined clinically, accurate/efficient diagnosis is still challenging. Moreover, brain functional abnormalities behind those alterations and conversions are still unclear. In this article, by developing novel sparse representations of whole-brain resting-state functional magnetic resonance imaging signals and by using the most updated Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we successfully identified multiple functional components simultaneously, and which potentially represent those intrinsic functional networks involved in the resting-state activities. Interestingly, these identified functional components contain all the resting-state networks obtained from traditional independent-component analysis. Moreover, by using the features derived from those functional components, it yields high classification accuracy for both AD (94%) and MCI (92%) versus normal controls. Even for SMC we can still have 92% accuracy.

摘要

阿尔茨海默病(AD)是最常见的痴呆类型(占60%至80%),是65岁及以上人群的第五大死因。到2050年,预计美国每33秒就会出现一例新的AD病例。不幸的是,目前尚无有效的治疗方法能够阻止或减缓导致AD症状的神经元死亡。另一方面,人们普遍认为AD在相关症状出现之前就已开始,因此其前期阶段,包括轻度认知障碍(MCI)甚至显著的记忆问题(SMC),不仅因其作为AD前驱的可能性,还因其可能作为向其他神经退行性疾病转化的预测指标而受到越来越多的关注。尽管这些前期阶段已在临床上得到定义,但准确/高效的诊断仍然具有挑战性。此外,这些改变和转化背后的脑功能异常仍不清楚。在本文中,通过开发全脑静息态功能磁共振成像信号的新型稀疏表示,并使用最新的阿尔茨海默病神经影像学倡议(ADNI)数据集,我们成功地同时识别了多个功能成分,这些成分可能代表参与静息态活动的内在功能网络。有趣的是,这些识别出的功能成分包含了从传统独立成分分析中获得的所有静息态网络。此外,通过使用从这些功能成分中提取的特征,对AD(94%)和MCI(92%)与正常对照的分类准确率都很高。即使对于SMC,我们仍然可以达到92%的准确率。

相似文献

1
Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database.
Brain Connect. 2014 Oct;4(8):575-86. doi: 10.1089/brain.2013.0221. Epub 2014 Jul 31.
2
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
6
A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
J Neurosci Methods. 2019 Apr 1;317:121-140. doi: 10.1016/j.jneumeth.2018.12.012. Epub 2018 Dec 26.
7
Random walks on B distributed resting-state functional connectivity to identify Alzheimer's disease and Mild Cognitive Impairment.
Clin Neurophysiol. 2021 Oct;132(10):2540-2550. doi: 10.1016/j.clinph.2021.06.036. Epub 2021 Aug 16.
8
Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
Neuroimage. 2016 Jan 15;125:1032-1045. doi: 10.1016/j.neuroimage.2015.10.081. Epub 2015 Oct 31.

引用本文的文献

1
fMRI-based Alzheimer's disease detection via functional connectivity analysis: a systematic review.
PeerJ Comput Sci. 2024 Oct 16;10:e2302. doi: 10.7717/peerj-cs.2302. eCollection 2024.
5
Analysis of Progression Toward Alzheimer's Disease Based on Evolutionary Weighted Random Support Vector Machine Cluster.
Front Neurosci. 2018 Oct 8;12:716. doi: 10.3389/fnins.2018.00716. eCollection 2018.
7
Connectome-scale functional intrinsic connectivity networks in macaques.
Neuroscience. 2017 Nov 19;364:1-14. doi: 10.1016/j.neuroscience.2017.08.022. Epub 2017 Aug 24.
9
Transmodal Learning of Functional Networks for Alzheimer's Disease Prediction.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):120-1213. doi: 10.1109/JSTSP.2016.2600400. Epub 2016 Aug 15.
10
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.
Alzheimers Dement. 2017 Apr;13(4):e1-e85. doi: 10.1016/j.jalz.2016.11.007. Epub 2017 Mar 22.

本文引用的文献

2
Connectome-scale assessments of structural and functional connectivity in MCI.
Hum Brain Mapp. 2014 Jul;35(7):2911-23. doi: 10.1002/hbm.22373. Epub 2013 Sep 30.
3
Broad domain generality in focal regions of frontal and parietal cortex.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16616-21. doi: 10.1073/pnas.1315235110. Epub 2013 Sep 23.
5
2013 Alzheimer's disease facts and figures.
Alzheimers Dement. 2013 Mar;9(2):208-45. doi: 10.1016/j.jalz.2013.02.003.
6
Describing functional diversity of brain regions and brain networks.
Neuroimage. 2013 Jun;73:50-8. doi: 10.1016/j.neuroimage.2013.01.071. Epub 2013 Feb 8.
7
Beyond brain regions: network perspective of cognition-emotion interactions.
Behav Brain Sci. 2012 Jun;35(3):158-9. doi: 10.1017/S0140525X11001567.
8
DICCCOL: dense individualized and common connectivity-based cortical landmarks.
Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.
9
Mild cognitive impairment: pathology and mechanisms.
Acta Neuropathol. 2012 Jan;123(1):13-30. doi: 10.1007/s00401-011-0884-1. Epub 2011 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验