Suppr超能文献

基于半导体纳米线的光电纤维。

Semiconducting Nanowire-Based Optoelectronic Fibers.

机构信息

Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.

Group of Electrical Engineering of Paris (GeePs), 91192, Gif sur Yvette Cedex, France.

出版信息

Adv Mater. 2017 Jul;29(27). doi: 10.1002/adma.201700681. Epub 2017 May 12.

Abstract

The recent ability to integrate semiconductor-based optoelectronic functionalities within thin fibers is opening intriguing opportunities for flexible electronics and advanced textiles. The scalable integration of high-quality semiconducting devices within functional fibers however remains a challenge. It is difficult with current strategies to combine high light absorption, good microstructure and efficient electrical contact. The growth of semiconducting nanowires is a great tool to control crystal orientation and ensure a combination of light absorption and charge extraction for efficient photodetection. Thus far, however, leveraging the attributes of nanowires has remained seemingly incompatible with fiber materials, geometry, and processing approaches. Here, the integration of semiconducting nanowire-based devices at the tip and along the length of polymer fibers is demonstrated for the first time. The scalable thermal drawing process is combined with a simple sonochemical treatment to grow nanowires out of electrically addressed amorphous selenium domains. First principles density-functional theory calculations show that this approach enables to tailor the surface energy of crystal facets and favors nanowire growth along a preferred orientation, resulting in fiber-integrated devices of unprecedented performance. This novel platform is exploited to demonstrate an all-fiber-integrated fluorescence imaging system, highlighting novel opportunities in sensing, advanced optical probes, and smart textiles.

摘要

最近,能够在光纤中集成基于半导体的光电功能,为柔性电子和先进纺织品开辟了有趣的机会。然而,在功能纤维中可扩展地集成高质量半导体器件仍然是一个挑战。在当前的策略中,很难将高吸收率、良好的微观结构和高效的电接触结合起来。半导体纳米线的生长是控制晶体取向并确保光吸收和电荷提取相结合以实现高效光电检测的有力工具。然而,到目前为止,利用纳米线的属性似乎与纤维材料、几何形状和加工方法不兼容。在这里,首次展示了在聚合物纤维的尖端和长度上集成基于半导体纳米线的器件。可扩展的热拉伸工艺与简单的超声化学处理相结合,在电寻址的非晶硒域中生长出纳米线。第一性原理密度泛函理论计算表明,这种方法能够调整晶面的表面能,并有利于沿优先取向生长纳米线,从而实现了具有前所未有的性能的纤维集成器件。该新型平台被用于演示全纤维集成荧光成像系统,突出了在传感、高级光学探针和智能纺织品方面的新机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验