Deng Liulin, Ibrahim Yehia M, Garimella Sandilya V B, Webb Ian K, Hamid Ahmed M, Norheim Randolph V, Prost Spencer A, Sandoval Jeremy A, Baker Erin S, Smith Richard D
Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.
Anal Chem. 2016 Oct 18;88(20):10143-10150. doi: 10.1021/acs.analchem.6b02678. Epub 2016 Oct 7.
The initial use of traveling waves (TW) for ion mobility (IM) separations using structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source and was limited to injected ion populations of ∼10 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods, such as in extended pulses. In this work a new SLIM "flat funnel" (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ∼3.2 × 10 charges for the extended trapping volume, over an order of magnitude greater than that of the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, rf, and dc confining field SLIM parameters involved in ion accumulation, injection, transmission, and IM separation in the FF module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in the signal-to-noise ratios (S/N) due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.
最初使用行波(TW)进行离子迁移率(IM)分离时,采用无损离子操纵结构(SLIM),使用离子漏斗阱(IFT)从连续电喷雾电离源中积累离子,由于捕获区域中空间电荷效应的出现,注入的离子数量限制在约10个电荷。由于长时间注入离子(如在延长脉冲中)分辨率降低,还会出现其他限制。在这项工作中,开发并展示了一种新的SLIM“扁平漏斗”(FF)模块,能够积累更多的离子并将其注入用于IM分离。离子电流测量表明,扩展捕获体积的容量约为3.2×10个电荷,比IFT的容量大一个数量级以上。将离子正交注入漏斗形分离区域可在初始IM分离阶段大大降低空间电荷效应,并且路径宽度逐渐减小,随着分离的进行,离子包在横向维度上被越来越多地压缩,从而允许通过电导极限进行有效传输或与后续离子操纵兼容。这项工作使用直接离子电流和质谱测量研究了FF模块中离子积累、注入、传输和IM分离所涉及的TW、射频和直流限制场SLIM参数。展示了宽质荷比范围的离子传输,以及由于注入的离子数量增加而导致的信噪比(S/N)显著提高。此外,我们观察到化学背景有所降低,这归因于在延长的离子积累期间溶剂相关簇的更有效去溶剂化。预计TW SLIM FF IM模块作为长路径SLIM IM分离模块的前端将特别有效。