Suppr超能文献

基于空间模型的神经影像元回归分析坐标化元分析数据。

Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.

机构信息

Oxford Big Data Institute, University of Oxford, Old road campus, Oxford, OX3 7LF, United Kingdom.

Department of Psychology, Florida International University, Miami, FL, 33199, United States.

出版信息

Biostatistics. 2024 Oct 1;25(4):1210-1232. doi: 10.1093/biostatistics/kxae024.

Abstract

Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.

摘要

基于坐标的荟萃分析结合了一系列神经影像学研究的证据,以估计大脑的激活情况。在这样的分析中,一个关键的实际挑战是找到一种计算效率高且具有良好统计可解释性的方法来对激活焦点的位置进行建模。在本文中,我们提出了一种基于生成的坐标荟萃回归 (CBMR) 框架,以逼近平滑的激活强度函数,并研究了研究水平协变量(例如,出版年份、样本大小)的影响。我们采用样条参数化来模拟大脑激活的空间结构,并考虑了四种随机模型来对焦点的随机变化进行建模。为了检验 CBMR 的有效性,我们对 20 个荟萃分析数据集进行了大脑激活估计,并在体素水平上进行了空间同质性检验,并将结果与基于核和基于模型的现有方法生成的结果进行了比较。关键词:广义线性模型;荟萃分析;空间统计学;统计建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0054/11471956/523fd9c10888/kxae024f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验