Suppr超能文献

通过贝叶斯空间点过程对功能神经影像数据进行荟萃分析。

Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes.

作者信息

Kang Jian, Johnson Timothy D, Nichols Thomas E, Wager Tor D

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109 (

出版信息

J Am Stat Assoc. 2011 Mar 1;106(493):124-134. doi: 10.1198/jasa.2011.ap09735.

Abstract

As the discipline of functional neuroimaging grows there is an increasing interest in meta analysis of brain imaging studies. A typical neuroimaging meta analysis collects peak activation coordinates (foci) from several studies and identifies areas of consistent activation. Most imaging meta analysis methods only produce null hypothesis inferences and do not provide an interpretable fitted model. To overcome these limitations, we propose a Bayesian spatial hierarchical model using a marked independent cluster process. We model the foci as offspring of a latent study center process, and the study centers are in turn offspring of a latent population center process. The posterior intensity function of the population center process provides inference on the location of population centers, as well as the inter-study variability of foci about the population centers. We illustrate our model with a meta analysis consisting of 437 studies from 164 publications, show how two subpopulations of studies can be compared and assess our model via sensitivity analyses and simulation studies. Supplemental materials are available online.

摘要

随着功能神经影像学学科的发展,人们对脑成像研究的荟萃分析越来越感兴趣。典型的神经影像荟萃分析会收集多项研究中的峰值激活坐标(焦点),并识别出一致性激活的区域。大多数成像荟萃分析方法仅产生零假设推断,而不提供可解释的拟合模型。为克服这些局限性,我们提出了一种使用标记独立聚类过程的贝叶斯空间层次模型。我们将焦点建模为潜在研究中心过程的后代,而研究中心又是潜在总体中心过程的后代。总体中心过程的后验强度函数可推断总体中心的位置,以及焦点围绕总体中心的研究间变异性。我们用一项由来自164篇出版物的437项研究组成的荟萃分析来说明我们的模型,展示如何比较两个研究亚组,并通过敏感性分析和模拟研究评估我们的模型。补充材料可在线获取。

相似文献

4
Identifying Activation Centers with Spatial Cox Point Processes Using fMRI Data.利用功能磁共振成像数据通过空间考克斯点过程识别激活中心。
IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov-Dec;13(6):1130-1141. doi: 10.1109/TCBB.2015.2510007. Epub 2015 Dec 17.
9
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.基于阈值高斯过程的贝叶斯空间盲源分离
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.

引用本文的文献

4
Multivariate Temporal Point Process Regression.多元时间点过程回归
J Am Stat Assoc. 2023;118(542):830-845. doi: 10.1080/01621459.2021.1955690. Epub 2021 Sep 1.
7

本文引用的文献

1
Functional volumes modeling: theory and preliminary assessment.功能容积建模:理论与初步评估。
Hum Brain Mapp. 1997;5(4):306-11. doi: 10.1002/(SICI)1097-0193(1997)5:4<306::AID-HBM17>3.0.CO;2-B.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验