Kang Jian, Johnson Timothy D, Nichols Thomas E, Wager Tor D
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109 (
J Am Stat Assoc. 2011 Mar 1;106(493):124-134. doi: 10.1198/jasa.2011.ap09735.
As the discipline of functional neuroimaging grows there is an increasing interest in meta analysis of brain imaging studies. A typical neuroimaging meta analysis collects peak activation coordinates (foci) from several studies and identifies areas of consistent activation. Most imaging meta analysis methods only produce null hypothesis inferences and do not provide an interpretable fitted model. To overcome these limitations, we propose a Bayesian spatial hierarchical model using a marked independent cluster process. We model the foci as offspring of a latent study center process, and the study centers are in turn offspring of a latent population center process. The posterior intensity function of the population center process provides inference on the location of population centers, as well as the inter-study variability of foci about the population centers. We illustrate our model with a meta analysis consisting of 437 studies from 164 publications, show how two subpopulations of studies can be compared and assess our model via sensitivity analyses and simulation studies. Supplemental materials are available online.
随着功能神经影像学学科的发展,人们对脑成像研究的荟萃分析越来越感兴趣。典型的神经影像荟萃分析会收集多项研究中的峰值激活坐标(焦点),并识别出一致性激活的区域。大多数成像荟萃分析方法仅产生零假设推断,而不提供可解释的拟合模型。为克服这些局限性,我们提出了一种使用标记独立聚类过程的贝叶斯空间层次模型。我们将焦点建模为潜在研究中心过程的后代,而研究中心又是潜在总体中心过程的后代。总体中心过程的后验强度函数可推断总体中心的位置,以及焦点围绕总体中心的研究间变异性。我们用一项由来自164篇出版物的437项研究组成的荟萃分析来说明我们的模型,展示如何比较两个研究亚组,并通过敏感性分析和模拟研究评估我们的模型。补充材料可在线获取。