National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Nucleic Acids Res. 2017 Jul 3;45(W1):W80-W88. doi: 10.1093/nar/gkx408.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a rapidly growing class of natural products with diverse structures and bioactivities. We have developed RiPPMiner, a novel bioinformatics resource for deciphering chemical structures of RiPPs by genome mining. RiPPMiner derives its predictive power from machine learning based classifiers, trained using a well curated database of more than 500 experimentally characterized RiPPs. RiPPMiner uses Support Vector Machine to distinguish RiPP precursors from other small proteins and classify the precursors into 12 sub-classes of RiPPs. For classes like lanthipeptide, cyanobactin, lasso peptide and thiopeptide, RiPPMiner can predict leader cleavage site and complex cross-links between post-translationally modified residues starting from genome sequences. RiPPMiner can identify correct cross-link pattern in a core peptide from among a very large number of combinatorial possibilities. Benchmarking of prediction accuracy of RiPPMiner on a large lanthipeptide dataset indicated high sensitivity, specificity, accuracy and precision. RiPPMiner also provides interfaces for visualization of the chemical structure, downloading of simplified molecular-input line-entry system and searching for RiPPs having similar sequences or chemical structures. The backend database of RiPPMiner provides information about modification system, precursor sequence, leader and core sequence, modified residues, cross-links and gene cluster for more than 500 experimentally characterized RiPPs. RiPPMiner is available at http://www.nii.ac.in/rippminer.html.
核糖体合成和翻译后修饰肽(RiPPs)构成了一个快速增长的天然产物类群,具有多种结构和生物活性。我们开发了 RiPPMiner,这是一种用于通过基因组挖掘破译 RiPP 化学结构的新型生物信息学资源。RiPPMiner 的预测能力来自基于机器学习的分类器,这些分类器使用经过精心整理的超过 500 种经过实验表征的 RiPP 数据库进行训练。RiPPMiner 使用支持向量机将 RiPP 前体与其他小蛋白区分开来,并将前体分为 12 个 RiPP 亚类。对于类如硫肽、蓝细菌素、套肽和杆菌肽等,RiPPMiner 可以从基因组序列开始预测前体的裂解位点和翻译后修饰残基之间的复杂交联。RiPPMiner 可以从大量组合可能性中识别核心肽中的正确交联模式。在大型硫肽数据集上对 RiPPMiner 预测准确性的基准测试表明,其具有高灵敏度、特异性、准确性和精度。RiPPMiner 还提供了可视化化学结构、下载简化分子输入线输入系统和搜索具有相似序列或化学结构的 RiPP 的接口。RiPPMiner 的后端数据库提供了超过 500 种经过实验表征的 RiPP 的修饰系统、前体序列、前导序列和核心序列、修饰残基、交联和基因簇的信息。RiPPMiner 可在 http://www.nii.ac.in/rippminer.html 上获取。