Suppr超能文献

基于肌电图的强健实时运动骨骼建模。

Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

出版信息

IEEE Trans Biomed Eng. 2018 Mar;65(3):556-564. doi: 10.1109/TBME.2017.2704085. Epub 2017 May 12.

Abstract

OBJECTIVE

Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human.

METHODS

We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system.

RESULTS

The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF.

CONCLUSION

The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems.

SIGNIFICANCE

The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

摘要

目的

目前的临床生物力学涉及到冗长的数据采集和耗时的离线分析,生物力学模型无法实时运行,无法实现人机接口。我们开发了一种方法,使我们能够在线分析完整人体中的神经肌肉骨骼功能。

方法

我们使用肌电图(EMG)驱动的肌肉骨骼建模来模拟从肌肉兴奋开始(EMG)到多个下肢自由度(DOF)周围机械力矩产生的所有转换。我们开发了一种校准算法,能够根据个体的人体测量学和产生力的能力专门调整肌肉骨骼模型参数。我们将建模范例纳入到一个计算效率高、通用的框架中,可以实时与任何运动数据采集系统接口。

结果

该框架展示了实时计算 13 个下肢肌肉-肌腱单元中的力和三个关节 DOF 处的力矩的能力。值得注意的是,它能够超越校准条件进行外推,即在六个未见过的任务和一个未见过的 DOF 期间预测准确的关节力矩。

结论

所提出的框架可以显著减少当前临床生物力学中的评估延迟,并为建立快速和个性化的治疗方法以及在患者和康复系统之间建立自然接口开辟新途径。

意义

EMG 与数值建模的集成将能够模拟包括肌肉/骨科缺陷在内的现实神经肌肉策略,这是纯建模公式无法稳健模拟的。这将使我们能够将其转化为临床环境,并开发医疗保健技术,包括内部机械力的实时生物反馈和直接的人机接口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验