文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用带有词嵌入表示的 Bi-LSTM 递归神经网络挖掘社交媒体中的电子烟不良事件。

Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.

机构信息

Department of Management Information Systems, University of Arizona, Tucson, AZ, USA.

Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA.

出版信息

J Am Med Inform Assoc. 2018 Jan 1;25(1):72-80. doi: 10.1093/jamia/ocx045.


DOI:10.1093/jamia/ocx045
PMID:28505280
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6455898/
Abstract

OBJECTIVE: Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. METHODS: Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. RESULTS: Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. CONCLUSION: Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.

摘要

目的:近年来,电子烟在全球范围内的使用越来越普及。然而,电子烟的风险尚未得到充分研究。由于实验和调查中的受试者样本量有限,大多数电子烟不良事件研究的检出率都较低。社交媒体为消费者对电子烟的反馈和体验提供了一个大型数据库,这对于电子烟的安全监测很有用。然而,社交媒体中非正式和非技术性的电子烟消费者词汇较难进行自动解释。这个问题阻碍了社交媒体内容在电子烟安全监测中的使用。最近,深度神经网络方法的发展为从嘈杂文本中提取命名实体提供了希望。受这些观察结果的启发,我们旨在设计一种深度神经网络方法,以从社交媒体中提取电子烟的安全信息。

方法:我们的深度神经语言模型利用词嵌入作为文本输入的表示,并使用最先进的双向长短期记忆(Bi-LSTM)递归神经网络识别命名实体类型。

结果:与 3 个基线模型相比,我们的 Bi-LSTM 模型的性能最佳,准确率为 94.10%,召回率为 91.80%,F1 得分为 92.94%。我们从研究测试平台中识别出了 1591 个独特的不良事件和 9930 个独特的电子烟组件(即化学品、口味和设备)。

结论:虽然条件随机场基线模型的准确率略高于我们的方法,但我们的 Bi-LSTM 模型的召回率要高得多,因此 F1 得分最高。我们的方法可以推广到从社交媒体中提取医疗概念,以用于其他医疗应用。

相似文献

[1]
Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.

J Am Med Inform Assoc. 2018-1-1

[2]
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.

J Am Med Inform Assoc. 2015-5

[3]
Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.

Drug Saf. 2019-1

[4]
Identifying health related occupations of Twitter users through word embedding and deep neural networks.

BMC Bioinformatics. 2022-9-28

[5]
Medical Named Entity Extraction from Chinese Resident Admit Notes Using Character and Word Attention-Enhanced Neural Network.

Int J Environ Res Public Health. 2020-3-2

[6]
A Social Media Study on the Associations of Flavored Electronic Cigarettes With Health Symptoms: Observational Study.

J Med Internet Res. 2020-6-22

[7]
Character level and word level embedding with bidirectional LSTM - Dynamic recurrent neural network for biomedical named entity recognition from literature.

J Biomed Inform. 2020-12

[8]
Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach.

Int J Environ Res Public Health. 2019-9-27

[9]
Entity recognition from clinical texts via recurrent neural network.

BMC Med Inform Decis Mak. 2017-7-5

[10]
Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.

J Am Med Inform Assoc. 2017-7-1

引用本文的文献

[1]
Promoting Health Literacy With Human-in-the-Loop Video Understandability Classification of YouTube Videos: Development and Evaluation Study.

J Med Internet Res. 2025-4-8

[2]
Unveiling the Influence of AI on Advancements in Respiratory Care: Narrative Review.

Interact J Med Res. 2024-12-20

[3]
What can we learn from a Chinese social media used by glaucoma patients?

BMC Ophthalmol. 2023-11-20

[4]
Can Race-sensitive Biomedical Embeddings Improve Healthcare Predictive Models?

AMIA Jt Summits Transl Sci Proc. 2023-6-16

[5]
A scholarly network of AI research with an information science focus: Global North and Global South perspectives.

PLoS One. 2022-4-15

[6]
Content Analysis of Nicotine Poisoning (Nic Sick) Videos on TikTok: Retrospective Observational Infodemiology Study.

J Med Internet Res. 2022-3-30

[7]
Identifying Electronic Nicotine Delivery System Brands and Flavors on Instagram: Natural Language Processing Analysis.

J Med Internet Res. 2022-1-18

[8]
Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model.

JMIR Med Inform. 2021-12-1

[9]
Vaping-Related Adverse Events and Perceived Health Improvements: A Cross-Sectional Survey among Daily E-Cigarette Users.

Int J Environ Res Public Health. 2021-8-5

[10]
Semi-Supervised Bidirectional Long Short-Term Memory and Conditional Random Fields Model for Named-Entity Recognition Using Embeddings from Language Models Representations.

Entropy (Basel). 2020-2-22

本文引用的文献

[1]
Trends in E-Cigarette Awareness and Perceived Harmfulness in the U.S.

Am J Prev Med. 2016-11-24

[2]
Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks.

Database (Oxford). 2016-10-24

[3]
Electronic Cigarette Use Among Adults: United States, 2014.

NCHS Data Brief. 2015-10

[4]
Adverse Drug Event-based Stratification of Tumor Mutations: A Case Study of Breast Cancer Patients Receiving Aromatase Inhibitors.

AMIA Annu Symp Proc. 2014-11-14

[5]
Utilizing social media data for pharmacovigilance: A review.

J Biomed Inform. 2015-4

[6]
Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review.

Ther Adv Drug Saf. 2014-4

[7]
Induced lexico-syntactic patterns improve information extraction from online medical forums.

J Am Med Inform Assoc. 2014-6-26

[8]
Applying MetaMap to Medline for identifying novel associations in a large clinical dataset: a feasibility analysis.

J Am Med Inform Assoc. 2014-6-13

[9]
Electronic cigarettes: human health effects.

Tob Control. 2014-5

[10]
Electronic cigarettes and conventional cigarette use among U.S. adolescents: a cross-sectional study.

JAMA Pediatr. 2014-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索