European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy.
National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5737-5742. doi: 10.1073/pnas.1702188114. Epub 2017 May 15.
Well-coordinated activation of all cardiomyocytes must occur on every heartbeat. At the cell level, a complex network of sarcolemmal invaginations, called the transverse-axial tubular system (TATS), propagates membrane potential changes to the cell core, ensuring synchronous and uniform excitation-contraction coupling. Although myocardial conduction of excitation has been widely described, the electrical properties of the TATS remain mostly unknown. Here, we exploit the formal analogy between diffusion and electrical conductivity to link the latter with the diffusional properties of TATS. Fluorescence recovery after photobleaching (FRAP) microscopy is used to probe the diffusion properties of TATS in isolated rat cardiomyocytes: A fluorescent dextran inside TATS lumen is photobleached, and signal recovery by diffusion of unbleached dextran from the extracellular space is monitored. We designed a mathematical model to correlate the time constant of fluorescence recovery with the apparent diffusion coefficient of the fluorescent molecules. Then, apparent diffusion is linked to electrical conductivity and used to evaluate the efficiency of the passive spread of membrane depolarization along TATS. The method is first validated in cells where most TATS elements are acutely detached by osmotic shock and then applied to probe TATS electrical conductivity in failing heart cells. We find that acute and pathological tubular remodeling significantly affect TATS electrical conductivity. This may explain the occurrence of defects in action potential propagation at the level of single T-tubules, recently observed in diseased cardiomyocytes.
所有心肌细胞的协调激活必须在每次心跳中发生。在细胞水平上,肌膜内陷的复杂网络,称为横轴向管状系统(TATS),将膜电位变化传播到细胞核心,确保同步和均匀的兴奋-收缩偶联。尽管心肌兴奋的传导已被广泛描述,但 TATS 的电特性仍知之甚少。在这里,我们利用扩散和电导率之间的形式类比,将后者与 TATS 的扩散特性联系起来。荧光漂白后荧光恢复(FRAP)显微镜用于探测分离的大鼠心肌细胞中 TATS 的扩散特性:TATS 管腔内部的荧光葡聚糖被漂白,然后通过从细胞外空间扩散未漂白的葡聚糖来监测信号恢复。我们设计了一个数学模型,将荧光恢复的时间常数与荧光分子的表观扩散系数相关联。然后,将表观扩散与电导率联系起来,用于评估膜去极化沿 TATS 被动传播的效率。该方法首先在通过渗透压冲击急性分离大多数 TATS 元件的细胞中进行验证,然后应用于探测心力衰竭细胞中 TATS 的电导率。我们发现急性和病理性管状重塑显著影响 TATS 的电导率。这可能解释了在最近观察到的患病心肌细胞中,单个 T 小管水平上动作电位传播缺陷的发生。