Crocini Claudia, Coppini Raffaele, Ferrantini Cecilia, Yan Ping, Loew Leslie M, Tesi Chiara, Cerbai Elisabetta, Poggesi Corrado, Pavone Francesco S, Sacconi Leonardo
European Laboratory for Non-Linear Spectroscopy, 50019 Florence, Italy;
Division of Pharmacology, Department "NeuroFarBa," University of Florence, 50139 Florence, Italy;
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15196-201. doi: 10.1073/pnas.1411557111. Epub 2014 Oct 6.
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca(2+) release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca(2+) release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca(2+) release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca(2+) release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca(2+) transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca(2+) release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca(2+) release, resulting in Ca(2+) sparks. The occurrence of tubule-driven depolarizations and Ca(2+) sparks may contribute to the arrhythmic burden in heart failure.
动作电位(APs)通过横向轴突管状系统(TATS),在整个心肌细胞中同步触发均匀的Ca(2+)释放。在心力衰竭(HF)中,TATS会发生结构重塑,导致跨心肌细胞的Ca(2+)释放不同步,并导致收缩功能障碍。在衰竭大鼠心脏的心肌细胞中,我们之前记录到存在未能传播AP且表现出自发电活动的TATS元件;然而,Ca(2+)释放的后果仍未解决。在这里,我们开发了一种成像方法,以同时评估TATS的电活动和局部Ca(2+)释放。在HF心肌细胞中,与具有电耦合元件的区域相比,T小管未能传导AP的部位显示出较慢且减少的局部Ca(2+)瞬变。得出的结论是,TATS电重塑是HF中Ca(2+)释放动力学、幅度和均匀性改变的主要决定因素。此外,在衰竭的T小管中发生的自发去极化事件可触发局部Ca(2+)释放,导致Ca(2+)火花。小管驱动的去极化和Ca(2+)火花的发生可能会加重心力衰竭中的心律失常负担。