Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5589-5594. doi: 10.1073/pnas.1618055114. Epub 2017 May 15.
Individual behavior, in biology, economics, and computer science, is often described in terms of balancing exploration and exploitation. Foraging has been a canonical setting for studying reward seeking and information gathering, from bacteria to humans, mostly focusing on individual behavior. Inspired by the gradient-climbing nature of chemotaxis, the infotaxis algorithm showed that locally maximizing the expected information gain leads to efficient and ethological individual foraging. In nature, as well as in theoretical settings, conspecifics can be a valuable source of information about the environment. Whereas the nature and role of interactions between animals have been studied extensively, the design principles of information processing in such groups are mostly unknown. We present an algorithm for group foraging, which we term "socialtaxis," that unifies infotaxis and social interactions, where each individual in the group simultaneously maximizes its own sensory information and a social information term. Surprisingly, we show that when individuals aim to increase their information diversity, efficient collective behavior emerges in groups of opportunistic agents, which is comparable to the optimal group behavior. Importantly, we show the high efficiency of biologically plausible socialtaxis settings, where agents share little or no information and rely on simple computations to infer information from the behavior of their conspecifics. Moreover, socialtaxis does not require parameter tuning and is highly robust to sensory and behavioral noise. We use socialtaxis to predict distinct optimal couplings in groups of selfish vs. altruistic agents, reflecting how it can be naturally extended to study social dynamics and collective computation in general settings.
个体行为在生物学、经济学和计算机科学中通常被描述为在探索和利用之间进行平衡。觅食一直是研究奖励寻求和信息收集的典范环境,从细菌到人类,主要关注个体行为。受趋化性梯度爬升性质的启发,信息趋化算法表明,局部最大化预期信息增益可导致高效的和行为学的个体觅食。在自然界和理论环境中,同种个体可以成为环境信息的有价值来源。虽然动物之间的相互作用的性质和作用已经被广泛研究,但这种群体中的信息处理设计原则在很大程度上是未知的。我们提出了一种用于群体觅食的算法,称为“社会趋化”,它将信息趋化和社会相互作用统一起来,其中群体中的每个个体同时最大化其自身的感官信息和社会信息项。令人惊讶的是,我们表明,当个体旨在增加其信息多样性时,机会主义个体的群体中会出现有效的集体行为,这与最佳群体行为相当。重要的是,我们展示了具有生物合理性的社会趋化设置的高效率,其中个体几乎不共享信息,并且依靠简单的计算从同种个体的行为中推断信息。此外,社会趋化不需要参数调整,并且对感官和行为噪声具有高度鲁棒性。我们使用社会趋化来预测自私和利他个体群体中的不同最优耦合,反映了它如何可以自然地扩展到一般环境中研究社会动态和集体计算。