Suppr超能文献

队列研究中膝关节骨关节炎结构进展临床预测算法的开发:添加软骨下骨密度测量的价值

Development of a clinical prediction algorithm for knee osteoarthritis structural progression in a cohort study: value of adding measurement of subchondral bone density.

作者信息

LaValley Michael P, Lo Grace H, Price Lori Lyn, Driban Jeffrey B, Eaton Charles B, McAlindon Timothy E

机构信息

Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue 3rd Floor, Boston, MA, 02118, USA.

Medical Care Line and Research Care Line, Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Medical Center, Houston, TX, 77030, USA.

出版信息

Arthritis Res Ther. 2017 May 16;19(1):95. doi: 10.1186/s13075-017-1291-3.

Abstract

BACKGROUND

Risk prediction algorithms increase understanding of which patients are at greatest risk of a harmful outcome. Our goal was to create a clinically useful prediction algorithm for structural progression of knee osteoarthritis (OA), using medial joint space loss as a proxy; and to quantify the benefit of including periarticular bone mineral density (BMD) in the algorithm.

METHODS

Participants were from the Osteoarthritis Initiative (OAI) Progression Cohort, with X-ray readings of medial joint space at 36- and 48-month visits, and a 30- or 36-month medial-to-lateral tibial BMD ratio (M:L BMD ratio) value. Loss of medial joint space was the outcome and clinically available factors associated with OA progression were employed in the base prediction algorithm, with M:L BMD ratio added to an enhanced prediction algorithm. The benefit of adding M:L BMD ratio was evaluated by change in area under the ROC curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI).

RESULTS

Five hundred thirty-three participants were included; 51 (14%) had medial joint space loss; 47% were female; the mean (SD) age was 64.6 (9.2) years and BMI was 29.6 (4.8) kg/m. The base algorithm model included age, BMI, gender, recent injury, knee pain, and hand OA as predictors and had an AUC value of 0.65. The algorithm adding M:L BMD ratio had an AUC value of 0.73, and the AUC, NRI and IDI were all significantly improved (p ≤ 0.002).

CONCLUSIONS

This clinical prediction algorithm predicts structural progression in individuals with OA using only clinically available predictors supplemented by the M:L BMD ratio, a biomarker that could be made available at clinical sites.

摘要

背景

风险预测算法有助于加深对哪些患者发生有害结局风险最高的理解。我们的目标是创建一种临床实用的预测算法,用于预测膝关节骨关节炎(OA)的结构进展,以内侧关节间隙变窄作为替代指标;并量化将关节周围骨密度(BMD)纳入该算法的益处。

方法

参与者来自骨关节炎倡议(OAI)进展队列,在36个月和48个月随访时有内侧关节间隙的X线读数,以及30个月或36个月的胫骨干内侧与外侧骨密度比值(M:L BMD比值)。内侧关节间隙变窄为结局指标,基础预测算法采用与OA进展相关的临床可用因素,增强预测算法中加入M:L BMD比值。通过受试者工作特征曲线下面积(AUC)的变化、净重新分类改善(NRI)和综合鉴别改善(IDI)来评估加入M:L BMD比值的益处。

结果

纳入533名参与者;51名(14%)有内侧关节间隙变窄;47%为女性;平均(标准差)年龄为64.6(9.2)岁,体重指数为29.6(4.8)kg/m²。基础算法模型纳入年龄、体重指数、性别、近期损伤、膝关节疼痛和手部OA作为预测因素,AUC值为0.65。加入M:L BMD比值的算法AUC值为0.73,AUC、NRI和IDI均显著改善(p≤0.002)。

结论

这种临床预测算法仅使用临床可用的预测因素,并辅以M:L BMD比值(一种可在临床场所获取的生物标志物)来预测OA患者的结构进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f8/5433155/5043477af8cb/13075_2017_1291_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验